

IBM® DB2® 9.7
Academic Workshop

Course Workbook

IBM Canada Ltd.

Information Management
Ecosystem Partnerships

V-20100729

IBM® DB2® 9.7
Academic Workshop

Course Workbook

Information Management Ecosystem Partnerships
imschool@us.ibm.com

Contents

 PREFACE
 WELCOME... 3
 RELATIONAL DATA MODEL.. 10
 DB2 FUNDAMENTALS AND IBM DATA STUDIO.................................... 21
 IBM DATA STUDIO LAB (HANDS-ON) .. 40
 WORKING WITH DATABASES AND DATABASE OBJECTS 55
 WORKING WITH DATABASES AND DATABASE OBJECTS LAB 74
 INTRODUCTION TO SQL.. 104
 UNDERSTANDING SQL LAB (HANDS-ON)... 128
 DATA CONCURRENCY ...162
 DATA CONCURRENCY LAB (HANDS-ON) ... 176
 DB2 DATABASE SECURITY .. 205
 DB2 SECURITY LAB (HANDS-ON) .. 216
 DB2 BACKUP AND RECOVERY .. 232
 DB2 BACKUP AND RECOVERY LAB (HANDS-ON)............................. 243
 DB2 PUREXML.. 257
 DB2 PUREXML – STORING XML DATA MADE EASY LAB 275
 DB2 PROGRAMMING FUNDAMENTALS .. 286
 DB2 PROGRAMMING FUNDAMENTALS LAB (HANDS-ON) 303
 APPENDIX I – VMWARE BASICS AND INTRODUCTION..................... 327

Preface

Welcome to the IBM DB2 9.7 Academic Workshop! If you are reading this text,
you are giving an important step towards building a successful career as an
Information Technology professional.

This course was specially designed for the academic community interested into
expanding their skill set on the exciting field of relational databases. Either if you
are a student taking your first steps into this area, or a member of the faculty, you
are certain to learn something new from this material. Additionally, the provided
hands-on laboratories, based on the latest version of IBM® DB2® for Linux,
UNIX and Windows, close the gap between theory learned from the
presentations, and real-world use of a Relational Database Management System
(RDBMS).

IBM DB2 for Linux, UNIX and Windows is an industry-leading performance
Relational Database Management System for mixed workloads that offers a wide
range of advanced features. During this course you will be exposed to some of
these features, understand the mechanics of relational databases and how DB2’s
features can be used to help increase productivity while lowering costs of
maintaining databases.

The course starts with a general overview of databases and the relational model
and moves on to introducing the DB2 environment and the easy of use of its
tools. Next, you will learn about the various objects that are part of a relational
databases and how to interact with them using SQL. Once you are comfortable
with the basic of RDBMS, we explore more advanced features such as DB2
pureXML, which allows supports storage of XML documents and use of XML
technologies such as XQuery and XML Schema. Afterwards, topics that every
Database Administrator (DBA) should know are presented such as implementing
security policy for access to data, backing up your database and understanding
data concurrency. The course finishes by briefly exploring how applications can
store and retrieve data from a DB2 server.

© 2010 IBM Corporation

Information Management

Information Management Ecosystem Partnerships
IBM Canada Lab

Summer/Fall 2010

Welcome
DB2 9.7 Academic Workshop

 2 © 2010 IBM Corporation

Information Management

Disclaimer

© Copyright IBM Corporation 2010. All rights reserved.

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE
EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS
PRESENTATION, IT IS PROVIDED �AS IS� WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS
INFORMATION IS BASED ON IBM�S CURRENT PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY
IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE OF, OR
OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION. NOTHING CONTAINED IN THIS
PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF
ANY AGREEMENT OR LICENSE GOVERNING THE USE OF IBM PRODUCTS AND/OR SOFTWARE.

IBM, the IBM logo, ibm.com, and DB2 are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or �), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on the Web at �Copyright and trademark
information� at www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

IBM DB2 9.7 Academic Workshop 3 of 335

 3 © 2010 IBM Corporation

Information Management

Agenda � Day 1
� 1.0 Welcome

� 1.1 The Relational Data Model

� < Break >

� 1.2 DB2 Fundamentals and Data Studio

� 1.3 IBM Data Studio Lab (Hands On)

 Lunch

� 1.4 Working with Databases and Database Objects

� 1.5 Working with Databases and Database Objects (Hands On)

� < Break >

� 1.6 Introduction to SQL

� 1.7 Understanding SQL Lab (Hands On)

� Summary

 4 © 2010 IBM Corporation

Information Management

Agenda � Day 2

� 2.1 Data Concurrency

� 2.2 Data Concurrency Lab (Hands On)

� < Break >

� 2.3 Database Security in DB2

� 2.4 DB2 Security Lab (Hands On)

Lunch

� 2.5 DB2 Backup and Recovery

� 2.6 DB2 Backup and Recovery Lab (Hands On)

� < Break >

� 2.7 DB2 pureXML

� 2.8 DB2 pureXML � Storing XML Data Made Easy Lab (Hands On)

� Summary

IBM DB2 9.7 Academic Workshop 4 of 335

 5 © 2010 IBM Corporation

Information Management

Agenda � Day 3

� 3.1 DB2 Programming Fundamentals

� < Break >

� 3.2 Accessing DB2 Databases From Applications Lab (Hands On)

� Summary

� Lunch

� 3.3 Course Review

� 3.4 IBM Certified Academic Associate - DB2 9 Database and Application
Fundamentals

 6 © 2010 IBM Corporation

Information Management

IBM Certified Academic Associate - 302
 - DB2 9 Database and Application Fundamentals

� Test : IBM Certified Academic Associate - DB2 9 Database and Application
Fundamentals

� This is an entry level academic course for the DB2 9 products The certified individual is
knowledgeable about the fundamental administration and development concepts of DB2 9.7.

� Exam breakdown:

� Relational Data Model (15%)

� DB2 Fundamentals (15%)

� DB2 pureXML (10%)

� Transactions on DB2 (5%)

� Data Concurrency (5%)

� Working with Database Objects (10%)

� Database Security in DB2 (10%)

� Backup and Recovery (5%)

� DB2 Programming Fundamentals (10%)

� Working with SQL (15%)

IBM DB2 9.7 Academic Workshop 5 of 335

 7 © 2010 IBM Corporation

Information Management

� Information Management Certification website:
� www.ibm.com/software/data/education

� Step 1

� IBM Certified Database Associate for DB2 9 Fundamentals, Exam 730
� Exam info: http://www-03.ibm.com/certify/tests/obj730.shtml

� Free tutorial: http://www.ibm.com/developerworks/offers/lp/db2cert/db2-cert730.html

� Step 2 (for DBAs)

� IBM Certified Database Administrator for DB2 9.7 DBA for LUW, Exam 541
� Exam info: http://www-03.ibm.com/certify/tests/obj541.shtml

� Free tutorial (DB2 9): http://www.ibm.com/developerworks/offers/lp/db2cert/db2-cert731.html

� Step 2 (for Developers)

� IBM Certified Application Developer for DB2 9.7, Exam 543
� Exam info: http://www-03.ibm.com/certify/tests/obj543.shtml

� Step 2 (for z/OS)

� IBM Certified Database Administrator for DB2 9 DBA for z/OS, Exam 732
� Exam info: http://www-03.ibm.com/certify/tests/obj732.shtml

� Step 3

� IBM Certified Advanced Database Administrator for DB2 9 DBA for LUW, Exam 734
� Exam info: http://www-03.ibm.com/certify/tests/obj734.shtml

DB2 Certification & Free Tutorials

 8 © 2010 IBM Corporation

Information Management

IBM Guided Hands-on Technical Learning
-Technical Education Bootcamps

� Education
� DM Bootcamps
� WW Bootcamps Available for:

� DB2 9.7 LUW & Migration Clinic
� DB2 pureXML
� Informix 11.5
� IBM InfoSphere Warehouse v9.7
� IBM Optim Solutions
� Guardium
� SolidDB
� InfoSphere Change Data Capture
� InfoSphere Information Server
� InfoSphere Master Data Management

� 2010 schedule, bootcamp agenda and registration available here:
www.ibm.com/developerworks/data/bootcamps/

IBM DB2 9.7 Academic Workshop 6 of 335

 9 © 2010 IBM Corporation

Information Management

� Reading Materials � printed
� www.ibm.com/software/data/education/bookstore

� Study Guides

� DB2 9 Fundamentals 978-1-58-347072-5

� DB2 9 for Linux, UNIX, and Windows Database Administration 158347-077-8

� DB2 9 for z/OS Database Administration 978-158347-074-9

� DB2 9 for Linux, UNIX, and Windows Database Administration Upgrade 158347-078-6

� Books

� DB2 9 for Linux, UNIX, and Windows � Sixth Ed. 0-13-185514-X

� Understanding DB2: Learning VisuallyReading Materials � online

� Manuals: http://www-01.ibm.com/support/docview.wss?rs=71&uid=swg27015148

� DB2 Information Center: http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/

� IBM Redbooks: http://www.redbooks.ibm.com/ with Examples 0-13-158018-3

� Understanding DB2 9 Security 0-13-1345907

� DB2 9 for Developers 978-158347-071-9

� Tutorials/Self-Study
� www.ibm.com/software/data/education/selfstudy.html

� Data Management Magazine � (Former IBM Database Magazine)
� http://www.ibmdmmagazinedigital.com/

� Performance Perspectives � Insights and ideas on Information on Demand
� http://www-01.ibm.com/software/data/performance-perspectives/

Individual Reading

 10 © 2010 IBM Corporation

Information Management

Bringing it all Together
-Information on Demand Conference

� IOD Global

� Education/Certification

� Business Prospecting

� Partner Networking

� IBM Relationships

IBM DB2 9.7 Academic Workshop 7 of 335

 11 © 2010 IBM Corporation

Information Management

� DB2 Express-C
 http://www.ibm.com/db2/express/

� Application Development Downloads

� IBM Data Studio: www.ibm.com/software/data/studio/

� DB2 Information Center

� DB2 Client

� Zend Core for IBM

� More Info: www.ibm.com/software/data/db2/ad/

� Download Via: www.ibm.com/db2/express/download.html

� Software Value Package:

https://www-304.ibm.com/jct09002c/partnerworld/mem/valuepack/mem_ben_value_resellers.html

Access to Software

 12 © 2010 IBM Corporation

Information Management

DB2 Express-C vs. DB2 Express Fixex Term License (FTL)

� * Features entitled with Subscription are available only while Subscriptions are valid

� ** Subscription Price indicated is for United States and subject to change. Pricing in other countries may vary.

� *** No-charge community-based assistance is available via the online forum.

� **** CPU and memory limitations for DB2 Express-C are not limitations of the machine size, rather they specify DB2 usage limits on
those machines.

IBM DB2 9.7 Academic Workshop 8 of 335

© 2010 IBM Corporation

Information Management

Information Management Ecosystem Partnerships
IBM Canada Lab

Summer/Fall 2010Questions?

E-mail: imschool@us.ibm.com

Subject: � �DB2 Academic Workshop

IBM DB2 9.7 Academic Workshop 9 of 335

© 2010 IBM Corporation

Information Management

Information Management Ecosystem Partnerships
IBM Canada Lab

Summer/Fall 2010

The Relational Data Model

 2 © 2010 IBM Corporation

Information Management

Agenda

� Data and Databases

� Database Management Systems (DBMS)

� Information Model & Data Model

� Relational Data Model & Relational Databases

� Normalization

IBM DB2 9.7 Academic Workshop 10 of 335

 3 © 2010 IBM Corporation

Information Management

What is Data?

� Collection of facts or numbers

� Can be quantitative or qualitative

� Describes a variable or set of variables

� Essentially data can be thought of as the result of
observations based on things like:

� measurements
� statistics

 4 © 2010 IBM Corporation

Information Management

Data and Information

� Data is simply facts

� Why is data important?
�By relating different pieces of data

we are able to extract valuable
information by presenting it in
meaningful context

� For that we need to be able to:

� Store data � so it can be persisted
� Structure data � so it is easier to manipulate
� Organize data � in a meaningful way
� Process data � to derive data value from it

IBM DB2 9.7 Academic Workshop 11 of 335

 5 © 2010 IBM Corporation

Information Management

Why Databases?

� Data can be stored using multiple methods such as:
�Text files
�Comma delimited data files
�Spreadsheets
�Databases

� Why database?
�The way data is accessed
�The way data is handled

 6 © 2010 IBM Corporation

Information Management

Managing Data

� Using a database provides:
�a standard interface for accessing data
�multiple users with simultaneous ability to insert, update and

delete data
�changes to the data without risk of losing data and its

consistency
�the capability to handle huge volumes of data and users
�tools for data backup, restore and recovery
�security
�reduce redundancy
�data independence

IBM DB2 9.7 Academic Workshop 12 of 335

 7 © 2010 IBM Corporation

Information Management

Database Management Systems

� Database Management System (DBMS)
� It is the software system that manages databases
� Provides an interface of access to the databases
� Provides data services to applications

� Efficient data querying and update mechanisms
� Data integrity � guarantees data is always right even in case

of software and hardware errors
� Others: backup, compression, security, replication, etc.

� DB2 is a Database Management System

 8 © 2010 IBM Corporation

Information Management

Information Model

� Information Model
�Abstract management of objects at a conceptual level
�Independent of specific implementations and protocols
�Hides all protocol and implementation details
�Defines relationships between managed objects.

� Multiple implementations of an information model exists
�Data models

IBM DB2 9.7 Academic Workshop 13 of 335

 9 © 2010 IBM Corporation

Information Management

Data Model

� A model is a representation of an object or concept of the
real world

� 3D model: a graphical representation of an object
� Scale model: a replica or copy of an object in a smaller size
� Business model: describes how a company operates

� Data Model
� Define how data is to be represented and structured
� It can be used to map how data from the real world is to be

represented in a software system

� Characteristics of a Data Model
� Lower level of abstraction
� Intended for the software developer
� Includes specific implementation and protocol details

 10 © 2010 IBM Corporation

Information Management

Types of Data Models

� Extended Relational

� Entity-Relationship

� Hierarchical

� Network

� Object-oriented

� Object-relational

� Relational

� Semantic

� Semi-structured (XML)

IBM DB2 9.7 Academic Workshop 14 of 335

 11 © 2010 IBM Corporation

Information Management

The Relational Data Model

� Proposed by E.F. Codd in 1970.

� It is mathematical model that describes data as a collection
of Relations (sets) and the values of the data is defined by
Domains.

� Focuses on providing better data independence

� Data are operated upon by means of a relational calculus or
relational algebra

� Advantages
� Based on a formal theoretical model and proven in practice
� Provides logical view of the data

� It is implemented by most DBMS in the market, such as DB2.
� There are called Relational Database Management

Systems

 12 © 2010 IBM Corporation

Information Management

Components of the Relational Data Model

� The relational data model has its own unique terms used to
define its concepts.

Attribute

Relation

Tuple

(ID, int) (NAME, text) (EXT, int) (Active, boolean)

1 John S 54213 Y

2 Michael B 52137 Y

3 Jeremy W 50603 Y

4 Leah E 58963 N

� Domain (or data type) defines the set of possible values that data can assume

� Relation is composed by a heading and a body

� Heading: a set of attributes

� Body: a set of tuples

� Attribute is composed by a name and a domain (type)

� A tuple is a set of attribute values

Domain

IBM DB2 9.7 Academic Workshop 15 of 335

 13 © 2010 IBM Corporation

Information Management

Components of a Relational Database

� Concepts from Relational Data Model can be mapped to their
implementation found in a Relational Database

� Relational databases store data using tables
� A table consists of columns and rows
� Each column has a specific data type
� Each row features a certain value for each column

Column

Table

Row

ID NAME EXTENSION MANAGER

1 John S 54213 Y

2 Susan P 59867 N

4 Andrew J 55935 N

5 Michael B 52137 Y

6 Jeremy W 50603 Y

7 Leah E 58963 N

 14 © 2010 IBM Corporation

Information Management

Tables

� A Table is the counterpart of a Relation from the Relational
Data Model

� A table stores data in rows and columns
� Rows are the same as Tuples
� Columns are the same as Attributes

� There can be multiple tables for different types of data to
reduce redundant information

� Normalization (more on this later)

� For example:
�You want to store data about a company

� Data about branch offices will be stored in a table
� Employee data for specific branches will be stored in its own

table
� Product data will be stored in another table

IBM DB2 9.7 Academic Workshop 16 of 335

 15 © 2010 IBM Corporation

Information Management

Columns

� Columns are also known as
fields

� Each field contains a
specific type of information
such as name, extension,
position and so on

� Columns must be
designated a specific
data type such as
DATE, VARCHAR, INTEGER
and so on

Specific
Information

Data type:
Char

 16 © 2010 IBM Corporation

Information Management

Domains and Data Types

� Data Type
� This is counterpart of Domains in the Relational Model,

which defines the smallest unit of data that can be stored
� Columns always have a data type

Manager Domain = (Y, N)

A domain is the set of all

possible values for the

specific attribute

Smallest unit of
Data (atomic value)

Attribute/Colum

IBM DB2 9.7 Academic Workshop 17 of 335

 17 © 2010 IBM Corporation

Information Management

Components of a Relational Database

� Primary Keys
� Uniquely identifies each tuple (row) of the relation (table)
� Relations must always have a primary key
� Although it is recommended, tables in a relational database

are not required to have a Primary Key

� Examples
� Driver's license of a person
� ISBN of a book
� Serial number of a product

Primary Key

 18 © 2010 IBM Corporation

Information Management

Components of a Relational Database

� Foreign Keys
� Attribute in one relation whose values match a primary key

of another relation
� Defines the relationship between two tables

ID
(PK)

NAME
DEPT_ID

(FK)

1 John S A

2 Michael B B

3 Jeremy W B

4 Leah E C

ID
(PK)

DEPT_NAME

A Finance

B Design

C Business

D Development

IBM DB2 9.7 Academic Workshop 18 of 335

 19 © 2010 IBM Corporation

Information Management

Why Normalization?

� Why do we need normalization?

� Consider the following table:
�Lists of task an employee is involved in:

� Example operation: if John moves to a new city, all entries
related to John must be updated

� redundancy
� anomalies

ID Name Office City Extension Task

1 John S Toronto 54213 Planning

1 John S Toronto 54213 Marketing

1 John S Toronto 54213 Testing

2 Susan P New York 59867 Marketing

3 Jennifer L Chicago 59415 Planning

3 Jennifer L Chicago 59415 Testing

 20 © 2010 IBM Corporation

Information Management

Normalization

� No anomalies, no redundancy

� No loss of information

Employee ID Task ID

1 1

1 2

1 3

2 2

3 1

3 3

ID Name Office City Extension

1 John S Toronto 54213

2 Susan P New York 59867

3 Jennifer L Chicago 59415

ID Task

1 Planning

2 Marketing

3 Testing

Task TableEmployee Table

Employee Tasks Table

IBM DB2 9.7 Academic Workshop 19 of 335

© 2010 IBM Corporation

Information Management

Information Management Ecosystem Partnerships
IBM Canada Lab

Summer/Fall 2010Questions?

E-mail: imschool@us.ibm.com
Subject: �DB2 Academic Workshop�

IBM DB2 9.7 Academic Workshop 20 of 335

© 2010 IBM Corporation

Information Management

Information Management Ecosystem Partnerships
IBM Canada Lab

Summer/Fall 2010

DB2® Fundamentals and IBM Data Studio

 2 © 2010 IBM Corporation

Information Management

Agenda

� Product Overview
�Editions & Features
�Licensing

� Fundamentals
�Architecture
�Users
�Instances
�DB2 Client
�Storage

� Table spaces
� Buffer pools

�Security
�SQL and XQuery

� Data Studio

� DSAC

Break free with DB2

IBM DB2 9.7 Academic Workshop 21 of 335

 3 © 2010 IBM Corporation

Information Management

DB2 Product Overview

� Officially released June 2009
�FP1 released Dec 2009
�FP2 tentative Q2 2010

� Full Multi-Platform Support
�Linux, UNIX (AIX, HP-UX)
�Windows 2000, 2003, 2008, XP, Vista, 7
�Solaris
�Beta: Express-C edition on MAC

� Common code base �DB2 is DB2 is DB2�
�No need to port between platforms
�New versions available on all platforms at the same time

DB2 LUW main site:
http://www-01.ibm.com/software/data/db2/linux-unix-windows/

 4 © 2010 IBM Corporation

Information Management

DB2 Packaging and Editions

Everyplace
Edition

Personal
Edition

Express &
Express-C

Editions

Workgroup
Server
Edition

Enterprise
Server
Edition

Large Businesses

Small, M
edium Businesses

Database Enterprise Developer Edition

Allows developers to develop and perform quality assurance. The edition is a product

bundle that includes many DB2 features.

IBM DB2 9.7 Academic Workshop 22 of 335

 5 © 2010 IBM Corporation

Information Management

Editions: for Small and Medium Businesses

Express

� Entry level, fully supported data
server

� Optimized to use up to 4 GB
memory and 4 processor cores

� Available for Linux, Windows

� Includes pureXML

� Available add-ons include
Performance Expert and High
Availability Feature

� High Availability Feature
provides 24 x 7 continuous
availability for your DB2 data
server

� Fixed Term License (FTL)
available, a 12-month subscription
which includes HADR

Express-C

� Free to develop, distribute, deploy

� Optimized to use up to 2 processor
cores and 2 GB memory

� Available for Linux, Windows,
Solaris (x64)

� Unsupported and without warranty

� Does not include replication
services and high availability

� Includes pureXML

www.ibm.com/db2/express

 6 © 2010 IBM Corporation

Information Management

Editions: for Larger Enterprises

Workgroup Server

� Designed for larger workloads
than DB2 Express

� Limited to 16 GB Memory and 16
processing cores or 4 sockets

� Available for Linux, UNIX,
Windows

� Identical to DB2 Express, but
includes High Availability Feature
Pack (TSA, HADR and Online
Reorg)

� Available add-ons include
Performance Expert

Enterprise Server

� Designed for heavy workloads,
large data warehouses

� No memory usage and processor
core limits

� Available for Linux, UNIX,
Windows, zLinux

� Includes pureXML, HADR,
Online REORG, Homogenous
Federation, DB2 Governor, MQT,
MDC, Query Parallelism,
Connection Concentrator, Table
Partitioning.

� Advanced features are available
as add-ons

IBM DB2 9.7 Academic Workshop 23 of 335

 7 © 2010 IBM Corporation

Information Management

Add-on Features for Enterprise Edition

 Storage Optimization
� Row Compression
� Index Compression
� Temporary Table

Compression
� XML Compression

Advanced Access Control
� Granular security with

Label-based Access
Control

 Performance Optimization
� Delivers a suite of reports

and tooling for performance
tuning

� Query Patroller
� Workload Management
� Performance Expert

 Homogeneous Replication
� High speed queue-based

replication services to
distribute, consolidate, and
synchronize data using Q
replication

 Geodetic Data Management
� Geodetic Extender:

Provides spatial analysis
with consideration for the
curvature of the earth

 8 © 2010 IBM Corporation

Information Management

DB2 Features and Functionality by Edition

Y e sY e s Y e s Y e s S p a t i a l E x t e n d e r

Y e sY e s Y e s Y e s p u r e X M L ® s t o r a g e

Y e sY e s Y e s Y e s N e t S e a r c h E x t e n d e r

Y e sY e s Y e s Y e s H o m o g e n o u s S Q L R e p l i c a t i o n

Y e sY e s Y e s Y e s H o m o g e n o u s F e d e r a t i o n

Y e sY e s Y e s Y e s C o m p r e s s i o n : b a c k u p

Y e sY e s Y e s T i v o l i ® S y s t e m A u t o m a t i o n

Y e sY e s Y e s O n l i n e r e o r g a n i z a t i o n

Y e sY e s Y e s H i g h a v a i l a b i l i t y d i s a s t e r r e c o v e r y

Y e sY e s

I B M ® D B 2 H i g h

A v a i l a b i l i t y

F e a t u r e f o r E x p r e s s

E d i t i o n

Y e s A d v a n c e d C o p y S e r v i c e s

Y e sN o N o N o T a b l e p a r t i t i o n i n g

Y e sN o N o N o Q u e r y p a r a l l e l i s m

Y e sN o N o N o M u l t i d i m e n s i o n a l c l u s t e r i n g (M D C) t a b l e s

Y e sN o N o N o M a t e r i a l i z e d q u e r y t a b l e s (M Q T)

Y e sN o N o N o D B 2 G o v e r n o r

Y e sN o N o N o C o n n e c t i o n c o n c e n t r a t o r

I B M H o m o g e n e o u s R e p l i c a t i o n

F e a t u r e f o r D B 2 E n t e r p r i s e S e r v e r E d i t i o n
N o N o N o H o m o g e n o u s Q R e p l i c a t i o n

N o N o N o P e r f o r m a n c e E x p e r t

N o N o N o Q u e r y P a t r o l l e r
I B M D B 2 P e r f o r m a n c e O p t i m i z a t i o n

F e a t u r e f o r E n t e r p r i s e S e r v e r E d i t i o n

N o N o N o W o r k l o a d m a n a g e m e n t

D B 2 S t o r a g e O p t i m i z a t i o n f e a t u r eN o N o N o C o m p r e s s i o n : r o w l e v e l

D B 2 G e o d e t i c D a t a M a n a g e m e n t f e a t u r eN o N o N o G e o d e t i c E x t e n d e r

D B 2 A d v a n c e d A c c e s s C o n t r o l f e a t u r eN o N o N o L a b e l - b a s e d a c c e s s c o n t r o l (L B A C)

E n t e r p r i s e

S e r v e r E d i t i o n

W o r k g r o u p

S e r v e r E d i t i o n

E x p r e s s

E d i t i o n

E x p r e s s E d i t i o n

(F T L)
F e a t u r e s

Y e sY e s Y e s Y e s S p a t i a l E x t e n d e r

Y e sY e s Y e s Y e s p u r e X M L ® s t o r a g e

Y e sY e s Y e s Y e s N e t S e a r c h E x t e n d e r

Y e sY e s Y e s Y e s H o m o g e n o u s S Q L R e p l i c a t i o n

Y e sY e s Y e s Y e s H o m o g e n o u s F e d e r a t i o n

Y e sY e s Y e s Y e s C o m p r e s s i o n : b a c k u p

Y e sY e s Y e s T i v o l i ® S y s t e m A u t o m a t i o n

Y e sY e s Y e s O n l i n e r e o r g a n i z a t i o n

Y e sY e s Y e s H i g h a v a i l a b i l i t y d i s a s t e r r e c o v e r y

Y e sY e s

I B M ® D B 2 H i g h

A v a i l a b i l i t y

F e a t u r e f o r E x p r e s s

E d i t i o n

Y e s A d v a n c e d C o p y S e r v i c e s

Y e sN o N o N o T a b l e p a r t i t i o n i n g

Y e sN o N o N o Q u e r y p a r a l l e l i s m

Y e sN o N o N o M u l t i d i m e n s i o n a l c l u s t e r i n g (M D C) t a b l e s

Y e sN o N o N o M a t e r i a l i z e d q u e r y t a b l e s (M Q T)

Y e sN o N o N o D B 2 G o v e r n o r

Y e sN o N o N o C o n n e c t i o n c o n c e n t r a t o r

I B M H o m o g e n e o u s R e p l i c a t i o n

F e a t u r e f o r D B 2 E n t e r p r i s e S e r v e r E d i t i o n
N o N o N o H o m o g e n o u s Q R e p l i c a t i o n

N o N o N o P e r f o r m a n c e E x p e r t

N o N o N o Q u e r y P a t r o l l e r
I B M D B 2 P e r f o r m a n c e O p t i m i z a t i o n

F e a t u r e f o r E n t e r p r i s e S e r v e r E d i t i o n

N o N o N o W o r k l o a d m a n a g e m e n t

D B 2 S t o r a g e O p t i m i z a t i o n f e a t u r eN o N o N o C o m p r e s s i o n : r o w l e v e l

D B 2 G e o d e t i c D a t a M a n a g e m e n t f e a t u r eN o N o N o G e o d e t i c E x t e n d e r

D B 2 A d v a n c e d A c c e s s C o n t r o l f e a t u r eN o N o N o L a b e l - b a s e d a c c e s s c o n t r o l (L B A C)

E n t e r p r i s e

S e r v e r E d i t i o n

W o r k g r o u p

S e r v e r E d i t i o n

E x p r e s s

E d i t i o n

E x p r e s s E d i t i o n

(F T L)
F e a t u r e s

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp

IBM DB2 9.7 Academic Workshop 24 of 335

 9 © 2010 IBM Corporation

Information Management

Licensing

All DB2 Database editions can be purchased by:

� Per authorized user
� License type: "Authorized User Option"

� Per processor (priced by PVU)
� License type: "CPU Option"

� Sub capacity pricing available

Other options of pricing, depending on edition:

� Per socket
�Workgroup edition

� Per server
� Express edition

Check the type of license being used:

1) Use command db2licm -l

2) Licensing center

 10 © 2010 IBM Corporation

Information Management

Licensing:: Per Authorized User

Authorized user:
single individual with a specific identity within or outside your
organization

� IDs cannot be shared or transferred (unless change in employment status)

� ID can establish one or more connections to the DB2 database system and
counts as a single authorized user

� ID is needed for each data server. Single user connecting to two data
servers would need two authorized user licenses

� Minimum number of users required for various editions

Eg: DB2 Express Edition and DB2 Workgroup Server Edition each require
a minimum of five authorized users for each server. Enterprise Server
edition requires min. 25 Aus per 100 PVUs.

IBM DB2 9.7 Academic Workshop 25 of 335

 11 © 2010 IBM Corporation

Information Management

Licensing:: Processor Value Unit Pricing

Processor value unit (PVU):

a unit of measure that is assigned to each processor core

� Sub-capacity Licensing: Enables the licensing of DB2 to a subset of the
processor cores on the server

� Value defined by processor vendor, brand, type and model number

� Allows unlimited users to access DB2 on that server

PVU licensing for Distributed Software
http://www-01.ibm.com/software/lotus/passportadvantage/pvu_licensing_for_customers.html

RISC and System z

x86

 12 © 2010 IBM Corporation

Information Management

Licensing:: Per Server

Limited use virtual server (LUV server):
is a physical server OR a virtual server that is
created by partitioning the resources available
to a physical server

� Only available for DB2 Express Edition

� Allows unlimited users to access DB2 on that
server

� All instances cannot collectively exceed 4
processor cores and 4 GB of memory

 New for
 DB2 9.7

Existing DB2 Express
customers licensed by PVU

Trade-in PVU license for DB2 Express
per server license (ratio of 200 PVUs
per server)

Retain PVU license

IBM DB2 9.7 Academic Workshop 26 of 335

 13 © 2010 IBM Corporation

Information Management

Licensing:: Per Socket

Socket:

defined as electronic circuitry that accepts a

processor chip

Processor chip:

the electronic circuitry that

contains one or more processor

cores and plugs into a socket

� Only available for Workgroup Edition

� 1 license for each socket on the server

� Allows unlimited users to access DB2 on that server

� Limit to 16 GB of memory and 4 sockets on a physical server

� Existing workgroup customers licensed by PVU can either

� Trade-in PVU license for DB2 Workgroup per socket license at
ratio of 100 PVUs per socket

� Retain PVU license

 New for
 DB2 9.7

 14 © 2010 IBM Corporation

Information Management

Licensing:: Metrics and Summary

� Click to add an outlinePersonal Express-C Express Workgroup Enterprise

Pricing
metric

Per install

(Assumes one

user)

Free Download

(Unsupported)

Authorized Users

(minimum of 5 per

server)

or

Per Server

or

PVUs (limited to

200 PVUs)

Eligible for Sub-

capacity pricing

Authorized

Users

(minimum of 5

per socket)

or

Per Socket

or

PVUs (limited to

480 PVUs)

Eligible for Sub-

capacity pricing

Authorized

Users (minimum

of 25 per 100

PVUs)

 or

PVUs

Eligible for Sub-

capacity pricing

Processor
limit

N/A DB2 throttles itself

to use maximum of

2 cores

DB2 throttles itself

to use maximum

of 4 cores

DB2 throttles

itself to use

maximum of 16

cores and 4

sockets

No Limit

Memory
limit

N/A DB2 throttles itself

to use maximum of

2 GB

DB2 throttles itself

to use a maximum

of 4GB

DB2 throttles

itself to use a

maximum of

16GB

No Limit

Platforms
supported

Windows &

Linux

Windows, Linux,
Solaris (x64)

Windows & Linux Windows,

Linux, AIX,

Solaris, HP-UX

Windows,

Linux, AIX,

Solaris, HP-UX

IBM DB2 9.7 Academic Workshop 27 of 335

 15 © 2010 IBM Corporation

Information Management

DB2 Process Model

� Single process and multithreaded model
�Process: db2sysc
�Threads: Engine Dispatchable Units (EDU)
�Multithreaded architecture benefits:

� New thread requires less resources than a new process
� Less time for context switching
� Easy configuration across platforms
� Dynamically allocate memory for sharing among EDUs

� DB2 Agents (db2agent)
�Special type of EDU to handle application requests
�The DB2 engine keeps a pool of agents available to service

requests
�An application is mapped to a coordinator agent

� DB2 has firewall to protect DB and DB manager
�Application runs on different address space to prevent app

errors leading to corruption of dbm files or internal buffer

Use db2pd -edus
to list all active EDUs

 16 © 2010 IBM Corporation

Information Management

SQL in a nutshell

� Data Definition Language (DDL)
� Defines properties of data objects

CREATE, ALTER, DROP, TRANSFER OWNERSHIP

� Data Manipulation Language (DML)
� Used to retrieve, add, edit and delete data

SELECT, INSERT, UPDATE, DELETE

� Data Control Language (DCL)
� Controls access to databases and data objects

GRANT, REVOKE

� Transaction Control Languages (TCL)
� Groups DML statements into transactions that can

collectively be applied to a database or undone in the event
of a failure
COMMIT, ROLLBACK, SAVEPOINT

IBM DB2 9.7 Academic Workshop 28 of 335

 17 © 2010 IBM Corporation

Information Management

pureXML & XQuery

� DB2 is fully hybrid DBMS with
pureXML technology

� Native storage of XML data type

� XQuery can be used for querying and
modifying XML data

� Search for objects that are at unknown levels of
the hierarchy.

� Perform structural transformations on the data
� Return results that have mixed types.
� Update existing XML data

xquery db2-fn:xmlcolumn("XMLCUSTOMER.INFO");

INFO

xquery

 for $p in db2-fn:xmlcolumn(�XMLPRODUCT.DESCRIPTION")/product
 let $limit := 0.05
 where $p/description/price > $limit
 order by $p/data(@pid) descending
 return ($p/description/name)

Returns xml data in the column

Retrieve all XML documents from an XML column,
then process them with an XQuery expression

 18 © 2010 IBM Corporation

Information Management

DB2 Access Plan

Provide Information on
these objects and parameters

An access plan specifies the order of
operations for accessing data
necessary to resolve a SQL or XQuery
statement

Dynamic
statements

Static
statements

tables

Table
functions

Indexes

operators

Legend

IBM DB2 9.7 Academic Workshop 29 of 335

 19 © 2010 IBM Corporation

Information Management

DB2 Users

Three users and groups are required

DB2 Administration
Server User

The user ID is used
to run the DB2
administration
server on the
system

DB2 Administration
Server User

The user ID is used
to run the DB2
administration
server on the
system

Fenced User

Used to run UDF's
and stored
procedures outside
of the address
space used by the
DB2 database

Fenced User

Used to run UDF's
and stored
procedures outside
of the address
space used by the
DB2 database

Instance Owner

The instance owner
home directory is
where the DB2
instance will be
created

Instance Owner

The instance owner
home directory is
where the DB2
instance will be
created

db2inst1 db2fenc1 dasusr1

 20 © 2010 IBM Corporation

Information Management

DB2 Environment

Operating system

Env variables

Global level profile
registry

Instance myinst

Instance level profile registry

dbm cfg files

Node directory

System db directory

DCS directory

Database MYDB2

db cofig

MyTablespace1

Table1 Table2

MyTablespace2

Table3 Index3

logsbufferpool(s)

Syscatspace Tempspace1 Userspace1

Database MYDB1

db cofig

MyTablespace1

TableX TableY

MyTablespace2

TableZ IndexZ

logsbufferpool(s)

Syscatspace Tempspace1 Userspace1

IBM DB2 9.7 Academic Workshop 30 of 335

 21 © 2010 IBM Corporation

Information Management

Instances

� Stand-alone DB2 environment

� Can have multiple instances per data
server

� All instances share the same executable
binary files

� Each instance has its own configuration

� DB2 allows installations of different
versions (binaries) in the same machine

Command Description Example

db2start Start the default instance db2start

db2stop Stop the current instance db2stop -f

db2icrt Create an instance db2icrt �u db2fenc1 db2inst1

db2idrop Drop an instance db2idrop �f db2inst1

db2ilist List all instances db2ilist

db2imigr Migrate an instance after upgrading DB2 db2imigr �u db2fenc1 db2inst1

db2iupdt Update an instance after installation of a fix pack db2iupdt �u db2fenc1 db2inst1

 22 © 2010 IBM Corporation

Information Management

Logging:: db2diag.log

� Trouble shooting and diagnostic purposes

� Located in $DB2INSTANCE_HOME/sqllib/db2dump/ by default

� General log which contains all DB2 errors and warnings

2 forms:

Configuration parameters:
� Diagsize: size of the log files for rotating log files form; 0 for single log file form
� Diagpath: Location of the log file(s)
� Diaglevel: Types of errors to be written to log

Single diagnostic
log file (db2diag.log)

single active log file that grows
indefinitely. DEFAULT behavior

Rotating diagnostic
log files (db2diag.N.log)

set of files that the active log file closes
and opens db2diag.N+1.log when it
reaches the limit size

IBM DB2 9.7 Academic Workshop 31 of 335

 23 © 2010 IBM Corporation

Information Management

DB2 Storage:: Table Spaces Overview

� Logical objects in between logical
table and physical containers

� Allows assignment of the location
of data to particular logical devices
or portions thereof

� All tables, indexes, and other data
are stored in a table space

� Can be associated to a specific
buffer pool Containers can be files,

directories or raw devices

 24 © 2010 IBM Corporation

Information Management

DB2 Storage:: Table Space Management

� System Managed Spaces (SMS)
�Data stored in files representing data objects
�Space is allocated on demand
�Access to data controlled using standard I/O functions of the OS

Ideal for small, personal databases and databases that grow/shrink rapidly
� Low maintenance and monitoring

� Database Managed Spaces (DMS)
�Data stored in files or on raw devices
�Storage space pre-allocated in file system, typically contiguous

physically
Ideal for performance-sensitive applications

� Increased maintenance and monitoring

CREATE TABLESPACE tbsp1 MANAGED BY SYSTEM
USING ('d:\acc_tbsp', 'e:\acc_tbsp', 'f:\acc_tbsp')

CREATE TABLESPACE tbsp2
PAGESIZE 8K MANAGED BY DATABASE
USING (FILE ' /storage/dms1' 10 M) AUTORESIZE YES

IBM DB2 9.7 Academic Workshop 32 of 335

 25 © 2010 IBM Corporation

Information Management

DB2 Storage:: Table Space Management

� Automatic Storage Table Space
�DBM creates and extends containers as needed up the

limits imposed by the storage paths associated with the
database

�Automatically handles resizing table spaces
�Creates a DMS table space for regular/large table spaces
�Creates a SMS table space for user or system temporary

table spaces

CREATE DATABASE mydb AUTOMATIC STORAGE YES

CONNECT TO mydb

CREATE TABLESPACE tbsp1 MANAGED BY AUTOMATIC STORAGE

New DB & TBSP
are handled by automatic storage

by DEFAULT

 26 © 2010 IBM Corporation

Information Management

DB2 Storage:: Buffer Pools

� Area of main memory used to cache table
and index data

� Each database must have at least one
buffer pool

� By default IBMDEFAULTBP is used
� Buffer pools can be created, dropped or altered
� SYSCAT.BUFFERPOOLS catalog view

accesses the information for the buffer pools
defined in the database

� Every table space associates a specific
buffer pool of the same page size

� Match buffer pool size with purpose of table
to increase hit ratio

� Self-Tuning Memory Manager (STMM)
available

CREATE BUFFERPOOL bp4k PAGESIZE 4K
CREATE TABLESPACE tbsp1 PAGESIZE 4K BUFFERPOOL bp4k

IBM DB2 9.7 Academic Workshop 33 of 335

 27 © 2010 IBM Corporation

Information Management

DB2 Security

Authentication:
System verifies a user's identity
�You are who you say you are�

Authorities:
Various degrees of control over functions. Can be at
system level, database level or object level

Privileges:
Permissions to perform an action or a task

Label Based Access Control (LBAC) credentials:
Decide exactly who has write access and who has read
access to individual rows and individual columns

Access to DB2

Access within DB2 database management system

 28 © 2010 IBM Corporation

Information Management

DB2 Sample Database

� To create the sample database populated with both relational
data and XML data

� Verify the database creation by simply connecting and
querying the data

db2sampl -dbpath $HOME �sql �xml

db2 catalog database sample as sample
at node mynode1

db2 drop database sample

IBM DB2 9.7 Academic Workshop 34 of 335

 29 © 2010 IBM Corporation

Information Management

Export, Import and Load Utility

� Oracle tools
� Exporting data: Oracle exp; SQL*Plus
� Importing data: Oracle imp; SQL*Loader

� Export Utility
� Move data from table or view to files

� Import Utility
� Performs SQL INSERTs

� Load Utility
� Moving large quantities of data into newly created tables, or into tables that already

contain data
� Writes formatted pages directly into the database
� Does not fire triggers, and does not perform referential or table constraints checking

(other than validating the uniqueness of the indexes)
� Handles most data types: XML, LOBs, UDTs
� 4 distinctive phases:

Load
� Data loaded to

table
� Collect index keys

and table
statistics

� Save points are
established

Build
� Indexes produced

Delete
� Rows causing a

unique or primary
key violation are
removed

� Deleted row stored
in load exception
table

Index Copy
� Index data copied

from sys temp
tbsp to original
tbsp

Export

Import or Load

 30 © 2010 IBM Corporation

Information Management

What is HADR?

� An HADR pair consists of a primary and a standby database
�Primary

� Handles all client connections and processes transactions
� Continuously ships DB2 HADR log files to the standby over

TCP/IP network

�Standby
� Originally initialized with cloned database from the primary
� Keep in sync with primary by applying received transaction

logs buffers

Server 1 Server 2
TCP/IP

Primary Standby

Log replication to
keep servers
synchronized

Client

IBM DB2 9.7 Academic Workshop 35 of 335

 31 © 2010 IBM Corporation

Information Management

What is HADR?

� When primary goes offline (planned or unplanned), standby
to take over the transactional workload

�Standby becomes the new primary

� Manual or Automatic Takeover via Tivoli System Automation
(TSA)

� Clients transparently re-routed with Automatic Client Reroute
(ACR)

Server 1 Server 2
TCP/IP

Standby Primary

Client

Application
Takeover

 32 © 2010 IBM Corporation

Information Management

IBM Data Studio 2.2 Overview

� No-charge Integrated Development Environment (IDE)
�Geared towards application developers and DBAs
�Supports DB2 for LUW, i5/OS and z/OS, Apache Derby,

Informix IDS, and others

� Benefits
�Integrates features previously available in separate tools to

minimize context switching
�Built on the Eclipse platform, offers low learning curve
�Simplifies development and administration functionality to

increase productivity for all roles throughout the data life
cycle

Download now at http://www.ibm.com/software/data/studio

IBM DB2 9.7 Academic Workshop 36 of 335

 33 © 2010 IBM Corporation

Information Management

IBM Data Studio at a glance
Perspective
Chooser

Project
Explorer
View

Data
Source
Explorer
View

Main View
Outline
View

Miscellaneous View

 34 © 2010 IBM Corporation

Information Management

Key Features

Data application developer features

� Routine wizards, editors and debugger to create, test, debug, and deploy routines, eg.
stored procedures and UDFs

� SQL Query builder and the SQL and XQuery editor to create, edit, and run SQL queries.

� Visual Explain to tune routines and SQL queries

� Create Web services that expose database operations to client applications

� XML Wizards and editors to develop XML applications

� Develop SQLJ applications in a Java project

Data and database object management features

� Establish connection to data sources

� Work with data objects: browse, modify privileges, drop

� Data object editors and wizards to create and alter data objects

� Change impact analysis

� Work with data: basic support for extracting and loading data

� Use data diagrams to visualize the relationships between data objects

IBM DB2 9.7 Academic Workshop 37 of 335

 35 © 2010 IBM Corporation

Information Management

Integrated Data Management (IDM) Portfolio

� IBM Optim Integrated Data Management solutions
� Manage data from requirements to retirement
� Boost performance
� Empower collaboration
� Improve governance across applications,

databases and platforms.

� Integrated Data Management Information Center
http://publib.boulder.ibm.com/infocenter/idm/v2r2/index.jsp

� In addition to Data Studio for development, there are paid editions
with additional functionality

Optim Development Studio 2.2
� Create and test database and pureQuery applications
� Support for Oracle databases

Optim Database Administrator 2.2
� Automates and simplifies complex database structural changes

 36 © 2010 IBM Corporation

Information Management

Data Studio Administration Console (DSAC)

� Web based tool for database health monitoring

� Provides a single portal for viewing the status of all your
databases

� Available for Linux, UNIX and Windows

� Available as a free download from:

http://www.ibm.com/developerworks/spaces/optim?pageid=649

Add connection by
specifying the database
name, host, port, user
and password

IBM DB2 9.7 Academic Workshop 38 of 335

 37 © 2010 IBM Corporation

Information Management

DSAC Capabilities

Health Summary tab quickly

summarizes the status of all

databases monitored by DSAC

Alert List tab displays the

warnings associated for each

database

Dashboard tab shows various

performance metrics and their

values

© 2010 IBM Corporation

Information Management

Information Management Ecosystem Partnerships
IBM Canada Lab

Summer/Fall 2010Questions?

E-mail: imschool@us.ibm.com
Subject: �DB2 Academic Workshop�

IBM DB2 9.7 Academic Workshop 39 of 335

IBM DB2® 9.7

IBM Data Studio
Hands-On Lab

I

Information Management Ecosystem Partnerships

IBM Canada Lab

IBM DB2 9.7 Academic Workshop 40 of 335

2

Contents

1. INTRODUCTION.. 3

2. OBJECTIVES .. 3

3. SUGGESTED READING ... 3

4. GETTING STARTED: THE BASICS OF IBM DATA STUDIO...................... 4

4.1 ECLIPSE FUNDAMENTALS... 4
4.1.1 DATA ORGANIZATION – WORKSPACES AND PROJECTS.......................... 4
4.1.2 USER INTERFACE – VIEWS AND PERSPECTIVES 6

5. ENVIRONMENT SETUP REQUIREMENTS ... 7
5.1 INITIAL STEPS ... 7
6. LAUNCHING DATA STUDIO ... 9
6.1 DATABASE CONNECTIONS.. 11

6.1.1 CREATING A NEW CONNECTION... 11
6.1.2 MODIFYING DATABASE PARAMETERS... 13
6.1.3 STOPPING – STARTING YOUR DB2 INSTANCE 14
6.1.4 DISCONNECTING AND RECONNECTING ... 15

7. SUMMARY... 15

IBM DB2 9.7 Academic Workshop 41 of 335

3

1. Introduction

With the advent of IBM® Data Studio comes a major advance in the way DB2®
developers and administrators alike carry out their day to day functions. Historically,
depending on the tasks to be completed, it was common to switch back and forth
between disparate tools such as Control Center, Health Monitor, Developer Workbench,
and even the DB2 Command Line Processor (CLP).

The release of IBM Data Studio changes all this, facilitating DB2 administration, design,
development and monitoring, all within an integrated Eclipse-based environment. Data
Studio, the same tool that allows tuning of buffer pools and restriction of access to data
objects, can now be used to develop data web services and debug stored procedures.
By leveraging the power of IBM Data Studio, users are certain to enjoy increased
productivity as they find themselves able to perform a majority of their tasks within a
single environment.

2. Objectives

By the end of this lab, you will be able to:

 Understand the basics of an Eclipse-based environment
 Establish a database connection
 Modify database parameters
 Start and stop a DB2 instance

3. Suggested reading

IBM Data Studio: Get Started with Data Web Services
http://www.ibm.com/developerworks/edu/dm-dw-dm-0711pauser-i.html

An introduction to data web services development, deployment, and testing using IBM
Data Studio.

IBM Data Studio Information Center
http://publib.boulder.ibm.com/infocenter/dstudio/v1r1m0/index.jsp

A repository complete with tutorials on developing and administering with IBM Data
Studio.

IBM DB2 9.7 Academic Workshop 42 of 335

4

4. Getting Started: The Basics of IBM Data
Studio

This section of the lab introduces you to the basics of IBM Data Studio and how you can
quickly get up and running with it.

After completing this section, you will be able to:

 Launch Data Studio
 Create a new database connection
 Disconnect and reconnect to a database

4.1 Eclipse Fundamentals
IBM Data Studio is built upon the Eclipse platform and, as such, is said to be an Eclipse-
based development environment. The Eclipse platform is a framework that allows
integrated development environments (IDE) to be created; plug-ins exist to allow
development in Java, C/C++, PHP, COBOL, Ruby, and more. Developers using Eclipse
will appreciate the familiar look and feel that IBM Data Studio offers.

4.1.1 Data Organization – Workspaces and Projects
In an Eclipse-based environment, all development takes place within a project, which is
a directory that contains all of the source code, graphics, and other collateral. This is a
concept with which most are familiar from using other IDE’s. In Data Studio, you will
typically work with Data Development projects, but other project types exist for Java
development, web development, and more.

Each project you create must be contained within a workspace, which is a directory in
your file system. A workspace directory contains subdirectories for each of the projects
created within it. For example, Figure 4-1 demonstrates a scenario in which a
workspace has been created on the path /workspace, and three projects – BankApp,
BookStore, and WebSite – have been created within the workspace. Notice that the
projects have all been created as subdirectories of /workspace.

/workspace

/workspace/BankApp

/workspace/BookStore

/workspace/WebSite

Figure 4-1 – Workspace-project hierarchy

IBM DB2 9.7 Academic Workshop 43 of 335

5

In an Eclipsed-based environment, workspaces and projects can easily be navigated via
the Project Explorer view (we’ll cover views in an upcoming section).
When an Eclipse-based environment is opened, the user chooses which workspace to
use in the dialog displayed in Figure 4-2. It is possible to create a new workspace by
entering a new, non-existent path, or to work with an existing workspace by specifying
an existing path.

Additionally, users can choose to only work with one particular workspace (and to never
be bothered again!) by checking the Use this as the default and do not ask again
checkbox. Of course, this can always be undone by modifying a setting in the program
preferences.

Figure 4-2 – Workspace selection

Figure 4- shows how the workspace hierarchy from Figure 4-1 looks in the Project
Explorer.

Figure 4-3 – The Project Explorer view

IBM DB2 9.7 Academic Workshop 44 of 335

6

4.1.2 User Interface – Views and Perspectives
Eclipse-based environments offer easy-to-use, customizable graphical interfaces
through the use of views and perspectives. Just as workspaces contain projects,
Eclipse perspectives contain views.

In fact, we’ve already seen an example of a view. In Figure 4-, we saw that the Project
Explorer view shows all projects in a workspace and files contained within them. A view
is nothing more than a task pane – a docked window that allows objects to be viewed
and possibly manipulated. There are also many other views, such as the Data Source
Explorer view, shown in Figure 4-2, which allows users to work with database
connections.

Figure 4-2 – The Data Source Explorer view

Eclipse-based environments define perspectives as a collection of views appropriate for
a particular task or line of work. When a perspective is opened, all views associated
with it are opened in the environment, and any other views previously opened are
hidden.

In IBM Data Studio, you will generally work with the Data perspective shown in Figure
4-4. This perspective provides the Data Project Explorer view, Data Source Explorer
view, Data Output view, and others.

To switch between perspectives, click the desired name in the toolbar displayed in
Figure 4-3. If the perspective you are looking for is not displayed, simply click the
toolbar icon to bring up a list of available perspectives.

Figure 4-3 – Changing perspectives on the toolbar

IBM DB2 9.7 Academic Workshop 45 of 335

7

Figure 4-4 – The Data perspective

Eclipse-based environments allow creation of custom perspectives by specifying which
views to load.

5. Environment Setup Requirements
To complete this lab you will need the following:

• DB2 Academic Workshop VMware® image
• VMware Player 2.x or VMware Workstation 6.x or later

For help on how to obtain these components please follow the instructions specified in
VMware Basics and Introduction.

5.1 Initial Steps

1. Start the VMware image by clicking the button in VMware.

IBM DB2 9.7 Academic Workshop 46 of 335

8

2. At the login prompt, login with the following credentials:

 Username: root
 Password: password

3. Read and accept the license agreement. You must accept and understand the

license agreements in order to proceed.

4. At the new login prompt, login with the db2inst1 credentials:

 Username: db2inst1
 Password: password

 Note: It is very important not to login as root user at this point.

IBM DB2 9.7 Academic Workshop 47 of 335

9

5. Open a terminal window by right-clicking on the Desktop and choosing the Open

Terminal item.

6. Ensure that the DB2 Database Manager has been started by issuing the following
command at the prompt:

db2inst1@db2rules:~> db2start

Note: This command will only work if you logged in as the user db2inst1. If you
accidentally logged in as another user, type su – db2inst1 at the command
prompt password: password.

7. This lab assumes you have the SAMPLE database created. You can check the list of

existing databases using the command below:

db2inst1@db2rules:~> db2 list db directory

8. If the SAMPLE databse is not on the list, you can create it using the following

command:

db2inst1@db2rules:~> db2sampl

6. Launching Data Studio

1. Click on the Computer button in the bottom left corner of the screen, and select
Data Studio 2.2.

IBM DB2 9.7 Academic Workshop 48 of 335

10

2. In the Select a workspace dialog, accept the default path. Click OK.

3. Data Studio will now start with the Welcome homepage.

4. Minimize this window by clicking the minimize button () located at the top right to

bring you into the Data perspective as shown below.

IBM DB2 9.7 Academic Workshop 49 of 335

11

6.1 Database Connections
Before you can do anything productive with Data Studio, a connection must be
established to a database. The Data Source Explorer view in Data Studio allows you to
do this. From this view it is possible to interact with and manipulate database artifacts.
Since we will be working with the SAMPLE database, let’s create a connection to it.

6.1.1 Creating a New Connection

1. In Data Studio navigate to the Data Source Explorer view, right-click on the

Database Connections folder and select New….

 Note: You can also click the icon in the Data Source Explorer toolbar.

2. Since we’re using DB2 on Linux®, select DB2 for Linux, Unix®, and Windows®.

IBM DB2 9.7 Academic Workshop 50 of 335

12

3. In the Properties pane, you specify the name of the database to which you wish to

connect, the host, port number, name of the database instance and the password.
Enter the following information:

 Database: SAMPLE
 Host: localhost
 Port number: 50001
 User name: db2inst1
 Password: password

4. Click the Test Connection button located on the left. You should receive a
message indicating that the connection succeeded. If not, repeat steps 2 - 3,
ensuring that your spelling is correct, and try again. Click Next when the test is
successful.

5. The next page allows you to filter out the data objects that you see by the schema
in which they exist. We’ll just leave it as is for now, and see another way to filter by
schema later on. Click Finish to create the connection.

6. In the Data Source Explorer view, expand the Database Connection folder if

necessary by clicking the icon. Notice the SAMPLE1 entry. Also notice that the
connection icon beside SAMPLE1 has a chain, while the others don’t. This means
that SAMPLE1 is the only database connection currently open.

IBM DB2 9.7 Academic Workshop 51 of 335

13

6.1.2 Modifying Database Parameters
Data Studio can perform several administrative functions within DB2. One of
these functions is the ability to manipulate database parameters.

1. Right-click on the SAMPLE database within the SAMPLE1
connection, and select Configure. Notice that this action will open a new view to
configure parameters for the SAMPLE database.

2. From this view it is possible to modify several parameters related to the

database configuration as well as parameters related to the instance to which
this database belongs. We will not modify any parameters at this time, so
simply close the view after you are done exploring.

IBM DB2 9.7 Academic Workshop 52 of 335

14

6.1.3 Stopping and Starting your DB2 instance
In the previous section you notice that it is possible to modify instance level
parameters. Some modifications actually require an instance re-start to come into
effect. That is why from Data Studio you have the ability to stop and start the
instance.

1. To stop the instance, right-click on the instance icon for the SAMPLE1
database and select Stop Instance.

IBM DB2 9.7 Academic Workshop 53 of 335

15

2. Notice that the Stop Instance db2inst1 view will open. Click the Run button

within the view to stop your DB2 instance. In the SQL Results view
you will be able to notice the status of your command that will go from
“Running” while in process to “Succeeded” once it is completed. In the Status
panel you can also appreciate the SQL command executed as well as the
output from the console.

3. Now start the instance once again. Right-click on the instance icon for the

SAMPLE database and select Start Instance. Click the Run button

within the view to start your DB2 instance.

6.1.4 Disconnecting and Reconnecting

1. Right-click on the SAMPLE1 node, and select Connect. Notice that the connection

icon has a chain, signifying that the connection has been established.

2. Right-click on the SAMPLE1 node, and select Disconnect. Notice that the

connection icon no longer has a chain, signifying that the connection has been
terminated.

3. Right-click on the SAMPLE1 node again, and select Delete. If prompted, confirm
that you would like to delete the profile.

4. Exit Data Studio.

7. Summary

You can hopefully see by now that IBM Data Studio is a highly productive environment
for DB2 development and administration. Over the course of the following labs, we’ll see
how fast and easy it is to create and execute SQL and XQuery scripts; develop and test
stored procedures in SQL and Java; create and alter database objects; analyze query
execution; etc.

IBM DB2 9.7 Academic Workshop 54 of 335

© 2010 IBM Corporation

Information Management

Information Management Ecosystem Partnerships
IBM Canada Lab

Summer/Fall 2010

Working with Databases and Database
Objects in DB2®

 2 © 2010 IBM Corporation

Information Management

Agenda

� Servers, Instances, and Databases

� Managing Instances

� Creating a DB2 Database

� Cataloging

� Database (Data) Objects

IBM DB2 9.7 Academic Workshop 55 of 335

 3 © 2010 IBM Corporation

Information Management

Servers, Instances, and Databases

� ..upon installation, the DB2 Database Manager
(program files) are copied to the server, and an
instance of the DB2 Database Manager is created.

� ..instances are responsible for managing system
resources and databases that fall under their control.

� ..databases are responsible for managing the
storage, modification, and retrieval of data.

DB2 views the world as a hierarchy of objects

Database
1

Database
2

Instance

Server

 4 © 2010 IBM Corporation

Information Management

Instances

� Stand-alone DB2 environment

� Can have multiple instances per data
server

� All instances share the same executable
binary files

� Each instance has its own configuration

� Different software level for an instance

Command Description Example

db2start Start the default instance db2start

db2stop Stop the current instance db2stop -f

db2icrt Create an instance db2icrt �u db2fenc1 db2inst1

db2idrop Drop an instance db2idrop �f db2inst1

db2ilist List all instances db2ilist

db2imigr Migrate an instance after upgrading DB2 db2imigr �u db2fenc1 db2inst1

db2iupdt Update an instance after installation of a fix pack db2iupdt �u db2fenc1 db2inst1

IBM DB2 9.7 Academic Workshop 56 of 335

 5 © 2010 IBM Corporation

Information Management

DB and DBM configurations

Description Example

View Database Manager Settings db2 get dbm cfg show detail

Change a Database Manager Setting db2 update dbm cfg using <parameter> <value>

Description Example

View Database Settings db2 get db cfg for <database>

db2 connect to <database>

db2 get db cfg show detail

Change a DB Setting db2 update db cfg using logprimary 10

 UPDATE DB CFG USING LOGRETAIN RECOVERY USEREXIT ON

 CALL SYSPROC.GET_DB_CONFIG()

 SELECT DBCONFIG_TYPE, LOGRETAIN, USEREXIT FROM SESSION.DB_CONFIG

Retrieving original value (on disk)
and updated value (in memory)

Querying the resulting global
Temporary table (DB_CONFIG)

Change value of logretain &
userexit db config parameters

Result:

 6 © 2010 IBM Corporation

Information Management

Databases

� What makes up a DB2 database?

�A DB2 database is made up of a collection of objects

�A database contains the following objects:

� Tables, views, indexes, schemas

� Locks, triggers, stored procedures, packages

� Buffer pools, log files, table spaces

� Which tools can help you create DB2 databases?

�First Steps

�Control Center (GUI wizard)

�Command Line Processor (CLP)

IBM DB2 9.7 Academic Workshop 57 of 335

 7 © 2010 IBM Corporation

Information Management

Creating a DB2 Database � First Steps

� As part of the DB2
installation process, the
First Steps panel is
displayed allowing the
user to generate a
number of a sample
databases to work with

� To launch the first steps
interface issue db2fs

from a DB2 command
line

 8 © 2010 IBM Corporation

Information Management

Typical Directory Hierarchy Tree

DATABASE_PATH

INSTANCE_NAME

NODExxxx

DATABASE_NAME

T0000000

T0000001

C0000000.TMP

T0000002

SQL0000x

DB2EVENT

SQLOGDIR

Location specified when the database was created OR the
value of the dftdbpath DBM configuration parameter.

Directories containing file or sub-directory
containers for the SYSCATSPACE,
TEMPSPACE1, and USERSPACE1 table spaces.

Directory with the name of the instance that controls the database.

Directory with the name of the node number assigned to this
partition (always NODE0000 if database is nonpartitioned).

Directory with the name that was assigned to the
database.

Database directory (name matches the database
token assigned to the database).

Directory for event monitor data.

Directory for transaction log files.

Files needed for database recovery and
bookkeeping tasks,

IBM DB2 9.7 Academic Workshop 58 of 335

 9 © 2010 IBM Corporation

Information Management

Creating a DB2 Database � Command Line

� The CREATE DATABASE command initializes a new database

>>-CREATE--+-DATABASE-+--database-name----------------------->...

CREATE DATABASE TESTDB1

CREATE DATABASE TESTDB2 ON C:

CREATE DATABASE TESTDB3

AUTOMATIC STORAGE YES

ON C:,D: DBPATH ON E:

database-name

Database is
created on drive C:

Automatic store is enabled and
storage paths are C: and D:

Database is
created on drive E:

Examples:

 10 © 2010 IBM Corporation

Information Management

With databases, DB2 automatically creates...

Catalog table spaces

SYSCATSPACE

(1 required)

� Catalog tables with metadata

� Must exist

Configuration
Information (DB CFG)
� Log Files

� History Files

� Etc.

User Table Spaces

USERSPACE1

(1 or more required)

� Default user table space

� Can be deleted

� All user defined tables

System temporary
table space

TEMPSPACE1

(1 required)

� System temporary space

� Work area for operations,

for example: join, sorts

IBM DB2 9.7 Academic Workshop 59 of 335

 11 © 2010 IBM Corporation

Information Management

DB2 Data Server Clients

IBM Data Server Drivers

� Light weight deployment solution for ISVs

� Must be installed manually

� IBM Data Server Driver for JDBC and SQLJ

� Java stored procedures and user-
defined functions

� JDBC, SQLJ

� IBM Data Server Driver for ODBC and CLI

� ODBC API, or CLI API

� IBM Data Server Driver Package

� ODBC, CLI, .NET, OLE DB, PHP,
Ruby, JDBC, or SQLJ

IBM Data Server Runtime Client

� JDBC, ADO.NET, OLE DB, ODBC, CLI, PHP, and
Ruby

� Has CLP but GUI tools are not included

� Support LDAP exploitation, TCP/IP and Named
Pipe, cataloging

IBM Data Server Client

� All the functionality of IBM Data Server Runtime
Client

� Plus functionality for database administration,
application development, and client/server
configuration.

� Capabilities include GUI tools such as
configuration assistant, control center, visual
studio tools

 12 © 2010 IBM Corporation

Information Management

Cataloging

� DB2 has multiple directories that are used to access
databases

�The system database directory contains a list and pointer to where
all the known databases can be found.

�The node directory contains information relating to how and where
remote systems or instances can be found.

�The Database Connection Services (DCS) Directory contains
information relating to how and where databases on DRDA
systems can be found.

IBM DB2 9.7 Academic Workshop 60 of 335

 13 © 2010 IBM Corporation

Information Management

Ways of Cataloging a Database at a Client

� Automated configuration using discovery

�Search discovery � client searches server on the network

�Known discovery � one particular server is queried for
information

� Automated configuration using access profiles

�Server profiles � contains information on instances and
databases

�Client profiles � used to duplicate information from one client to
another

� Manual configuration

�Configuration Assistant (graphical)

�Data Studio (graphical)

�Command Line Processor (CLP)

 14 © 2010 IBM Corporation

Information Management

Cataloguing:: Setting Up Communications

� To use a remote database:

1. Catalog the remote system (node)

2. Catalog the database within the remote node

� 3 tools available:

� Configuration Assistant (graphical)

� Data Studio (graphical)

� Command Line Processor (CLP)

authentication_type

catalog database sample as mysample at node db2node
authentication server

database_aliasdatabase_name node_name

catalog tcpip node db2_node remote mysystem server
db2tcp42

alias host_name or ip_addr

service_name
or port_number

db2 list [database|node]
directory

can be used to find the locally
catalogued DB or node

IBM DB2 9.7 Academic Workshop 61 of 335

 15 © 2010 IBM Corporation

Information Management

Database (Data) Objects

� Database objects, also known as data objects, are used to
control how all user data (and some system data) is stored
and organized within a DB2 database

User-Defined
Functions

Stored
Procedures

Packages

TriggersSequencesAliasesIndexes

ViewsTablesSchemas

 16 © 2010 IBM Corporation

Information Management

Schemas

� Schemas (unique identifiers) are objects that are used to
logically classify and group other objects in the database.

� Schemas have privileges associated with them that allow the
schema owner to control which users can create, alter, and
drop objects within them.

� Benefits of a schema:

�Tedious to search through entire database for objects with the
same name

� The name of each object needs to be unique only within its schema

�Access control

IBM DB2 9.7 Academic Workshop 62 of 335

 17 © 2010 IBM Corporation

Information Management

Schemas

� Most database objects have a two-part object name

� The first part being the schema name (or qualifier)

� The second is the object name

� When an object is created, you can assign it to a specific schema

�SCHEMA_NAME.OBJECT_NAME

� For example

�CREATE SCHEMA PAYROLL

�CREATE TABLE PAYROLL.STAFF

� Table named STAFF is
assigned to the PAYROLL schema

 18 © 2010 IBM Corporation

Information Management

Schemas � Example :: Using the command line

� CREATE SCHEMA payroll AUTHORIZATION user1;

� COMMENT ON SCHEMA payroll IS 'schema for payroll
application';

Creates a schema for an
individual user with the

authorization ID "USER1"

Schema
name

Schema to
comment on

Comment
string

IBM DB2 9.7 Academic Workshop 63 of 335

 19 © 2010 IBM Corporation

Information Management

Tables

� A relational database presents data as a collection of tables

� A table consists of data logically arranged in columns and
rows (records)

�each column contains values of the same data type

�each row contains a set of values for each column available

� The storage representation
of a row is called a record

� the storage representation
of a column is called a field

� each intersection of a row
and column is called a value

DEPTID DEPTNAME COSTCENTER

 A000 ADMINISTRATION 10250

 B001 PLANNING 10820

 C001 ACCOUNTING 20450

 D001 HUMAN RESOURCES 30200

 E001 R & D 50120

 E002 MANUGACTURING 50220

 E003 OPERATIONS 50230

Record
(Row)

DEPARTMENT Table

Field
(Column
)

Value

 20 © 2010 IBM Corporation

Information Management

Tables � 3 Main Types of Tables

� Base Tables

� User�defined tables designed to hold persistent user data

� CREATE TABLE department

(deptid CHAR(4),

 deptname VARCHAR(30),

 costcenter INTEGER);

� Result Tables

� DB2 Database Manager�defined tables populated with rows retrieved
from one or more base tables in response to a query

� Declared Temporary Tables

� User�defined tables used to hold nonpersistent data temporarily, on
behalf of a single application.

� Explicitly created by an application when they are needed and implicitly
destroyed when the application that created them terminates its last
database connection.

� Created with DECLARE GLOBAL TEMPORARY TABLE statement

table-name
column-name:

names a column of
the table data-type

IBM DB2 9.7 Academic Workshop 64 of 335

 21 © 2010 IBM Corporation

Information Management

Views

� Views can be seen as virtual tables derived from one or more
tables or views

�Created to limit access to sensitive data or group together data
from different tables in a single object.

�Views do not contain real data.

� Only the view definition itself is actually stored in the database

�Can be deletable, updatable, insertable, and read-only.

�When changes are made to data through a view, the data is
changed in underlying table itself.

�Can be used interchangeably with tables when retrieving data.

 22 © 2010 IBM Corporation

Information Management

Views � Example :: Simple view referencing two base tables

EMPID NAME INSTID

001 JAGGER, MICK H01

002 RICHARDS, KEITH G01

003 WOOD, RONNIE G01

004 WATTS, CHARLIE D01

005 WYMAN, BILL B01

006 JONES, BRIAN G01

INSTID NAME

H01 HARMONICA

G01 GUITAR

D01 DRUMS

B01 BASS GUITAR

K01 KEYBOARD

S01 SAXAPHONE

EMPID NAME INSTNAME

001 JAGGER, MICK HARMONICA

002 RICHARDS, KEITH GUITAR

003 WOOD, RONNIE GUITAR

004 WATTS, CHARLIE DRUMS

005 WYMAN, BILL BASS GUITAR

006 JONES, BRIAN GUITAR

CREATE VIEW myview(empid, name, instname) AS
SELECT T1.empid, T1.name, T2.name

FROM T1, T2
WHERE T1.instid=T2.instid

view-name column-name(s)

Identifies the view
definition

Defines the
view

T1 T2

myview

IBM DB2 9.7 Academic Workshop 65 of 335

 23 © 2010 IBM Corporation

Information Management

Indexes

� An index is an object that contains an ordered set of pointers
that refer to rows in a base table. They are based upon one
or more columns but stored as a separate entity.

DEPTID ROW

A000 5

B001 2

C001 8

D001 11

E001 3

E002 6

E003 4

F001 1

F002 9

F003 7

G010 10

DEPARTMENT Table

DEPTID DEPTNAME COSTCENTER

F001 ADMINISTRATION 10250

B001 PLANNING 10820

E001 ACCOUNTING 20450

E003 HUMAN RESOURCES 30200

A000 R & D 50120

E002 MANUGACTURING 50220

F003 OPERATIONS 50230

C001 MARKETING 42100

F002 SALES 42200

G010 CUSTOMER SUPPORT 42300

D001 LEGAL 60680

DEPTID Index Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

Row 9

Row 10

Row 11

 24 © 2010 IBM Corporation

Information Management

Indexes � Importance

� ..provide a fast, efficient method for locating specific rows of
data in very large tables.

� ..provide a logical ordering of the rows of a table

� ..can be used to enforce the uniqueness of records stored in
a table.

� ..can force a table to use clustering storage, which causes
the rows of a table to be physically arranged according to the
ordering of their index column values.

IBM DB2 9.7 Academic Workshop 66 of 335

 25 © 2010 IBM Corporation

Information Management

Indexes � Example

� Suppose you had the following EMPLOYEES base table..

..and you wanted to create an index such that the index key
consists of the column named EMPNO and all employee numbers
entered will be guaranteed to be unique..

Column
Name ...

Data Type ...

EMPNO INTEGER

FNAME CHAR(20)

LNAME CHAR(30)

TITLE CHAR(10)

DEPARTMENT CHAR(20)

SALARY DECIMAL(6,2)

 26 © 2010 IBM Corporation

Information Management

Indexes � Example (continued)

CREATE UNIQUE INDEX empno_indx
ON employees(empno)

UNIQUE prevents the table from

containing two or more rows with the
same value of the index key

table-name identifies a table on
which an index is to be created

column-name identifies a column
that is to be part of the index key

IBM DB2 9.7 Academic Workshop 67 of 335

 27 © 2010 IBM Corporation

Information Management

Aliases

� An alias is an alternate name for an object such as a table or
view.

� Like other objects, an alias can be created, dropped, and have
comments associated with it.

� Aliases are publicly referenced names, so no special authority or
privilege is required to use them.

�However, access to the table or view that an alias refers to still
requires appropriate authorization.

� Aliases can be created by executing the CREATE ALIAS SQL

statement

 28 © 2010 IBM Corporation

Information Management

Aliases

� Example

�..you wanted to create an alias that references a table named
EMPLOYEES and you wanted to assign it the name EMPINFO..

� CREATE ALIAS empinfo FOR employees

� Why use an alias instead of the actual object name?

�So that SQL statements can be constructed such that they are
independent of the qualified names that identify the base tables or
views they reference.

Names the alias. The name must not
identify a table, view, nickname, or

alias that exists in the current
database.

Identifies the table,
view, nickname, or

alias for which alias-
name is defined.

IBM DB2 9.7 Academic Workshop 68 of 335

 29 © 2010 IBM Corporation

Information Management

Sequences

� A sequence is an object that is used to generate data values
automatically. Unlike an identity column, a sequence is not
tied to any specific column or any specific table.

�An identity column provides a way for DB2 to automatically
generate a unique numeric value for each row that is added to the
table.

� Sequences have the following characteristics:

�Values generated can be any exact numeric data type that has a
scale of zero (SMALLINT, BIGINT, INTEGER, or DECIMAL).

�Consecutive values can differ by any specified increment value.

�Counter values are recoverable. Counter values are reconstructed
from logs when recovery is required.

�Values generated can be cached to improve performance.

 30 © 2010 IBM Corporation

Information Management

Sequences

� Sequences can generate values in one of three ways:

�By incrementing or decrementing by a specified amount, without
bounds

�By incrementing or decrementing by a specified amount to a
user�defined limit and stopping

�By incrementing or decrementing by a specified amount to a
user�defined limit, and then cycling back to the beginning and
starting again

� Example: if you wanted to create a sequence that generates
numbers, starting with the number 100 and incrementing
each subsequent number produced by 10

� CREATE SEQUENCE emp_id START WITH 100 INCREMENT BY 10

Names the sequence

Specifies the first
value for the sequence

Specifies the interval
between consecutive

values of the sequence

IBM DB2 9.7 Academic Workshop 69 of 335

 31 © 2010 IBM Corporation

Information Management

Triggers

� A trigger defines a set of actions that are performed in
response to an insert, update, or delete operation on a
specified table.

� Like constraints, triggers are often used to enforce data integrity
and business rules.

� Unlike constraints, triggers can also be used to update other
tables, automatically generate or transform values for inserted or
updated rows, and invoke functions to perform tasks such as
issuing errors or alerts.

� Using triggers places the logic that enforces business rules inside
the database.

 32 © 2010 IBM Corporation

Information Management

Triggers � Example

� Suppose you had the following EMPLOYEES base table..

..and you wanted to create a trigger for EMPLOYEES that will cause
the value for the column named EMPNO to be incremented each
time a row is added to the table

Column Name ... Data Type ...

EMPNO INTEGER

FNAME CHAR(20)

LNAME CHAR(30)

TITLE CHAR(10)

DEPARTMENT CHAR(20)

SALARY DECIMAL(6,2)

IBM DB2 9.7 Academic Workshop 70 of 335

 33 © 2010 IBM Corporation

Information Management

Triggers � Example cont'd

CREATE TRIGGER empno_inc
AFTER INSERT ON employees
FOR EACH ROW
UPDATE empno SET empno = empno + 1

Names the
trigger

Specifies the action to be performed
when a trigger is activated

The action is to be
applied once for each row

affected by the trigger

The action is to be applied after
the changes caused by the

actual update of the subject table

 34 © 2010 IBM Corporation

Information Management

User-defined Functions

� User�defined functions (UDFs) are special objects that are
used to extend and enhance the support provided by the
built�in functions available with DB2.

� Unlike DB2's built�in functions, user�defined functions can take
advantage of system calls and DB2's administrative APIs

� User-defined functions are created (or registered) by executing
the CREATE FUNCTION SQL statement.

� SQL Scalar, Table, or Row. Constructed using only SQL
statements and can return a value, row or table.

� External Scalar/Table. Written using a high-level programming
language such as C, C++, or Java and returns a single value or
table.

IBM DB2 9.7 Academic Workshop 71 of 335

 35 © 2010 IBM Corporation

Information Management

Stored Procedures

� An SQL stored procedure is an ordinary program composed
entirely of SQL statements that can be called by an
application.

� Stored procedures can be called locally or remotely

� An external stored procedure is a stored procedure that is written
using a high-level programming language

�External stored procedures can be more powerful than SQL stored
procedures because they can take advantage of system calls and
administrative APIs along with SQL statements.

 36 © 2010 IBM Corporation

Information Management

Stored Procedures � Advantages / Benefits

� Reduces network traffic

� Access to features that exist only on the server

� Enforcement of business rules

� A remote stored procedure provides the most advantages:

�It splits the application logic and encourages an even distribution
of the computational workload

�It provides an easy way to call a remote program

IBM DB2 9.7 Academic Workshop 72 of 335

© 2010 IBM Corporation

Information Management

Information Management Ecosystem Partnerships
IBM Canada Lab

Summer/Fall 2010Questions?

E-mail: imschool@us.ibm.com
Subject: �DB2 Academic Workshop�

IBM DB2 9.7 Academic Workshop 73 of 335

IBM DB2® 9.7

Working with
Databases and
Database Objects

I

Information Management Emerging Partnership and Technologies

IBM Canada Lab

IBM DB2 9.7 Academic Workshop 74 of 335

2

Contents

CONTENTS... 2

1. INTRODUCTION.. 3

2. OBJECTIVES .. 3

3. SUGGESTED READING ... 3

4. GETTING STARTED ... 3

4.1 ENVIRONMENT SETUP REQUIREMENTS ... 3
4.2 INITIAL STEPS ... 4

5. WORKING WITH DB2 DATABASES.. 5

5.1 FIRST STEPS .. 5
5.2 COMMAND LINE & ASSOCIATED DATABASE FILES .. 7
5.3 CONNECTING TO A DB2 DATABASE .. 10

5.3.1 USING CONNECT ... 10
5.3.2 CATALOGING A DB2 DATABASE ... 11

6. WORKING WITH DB2 DATA OBJECTS .. 13

6.1 TABLES .. 13
6.1.1 SCHEMAS... 17

6.2 VIEWS .. 20
6.3 ALIASES ... 22
6.4 INDEXES ... 24
6.5 SEQUENCES ... 26
6.6 TRIGGERS .. 28

7. SUMMARY... 30

IBM DB2 9.7 Academic Workshop 75 of 335

3

1. Introduction

This module is designed to introduce you to instances and databases, to walk you
through the database creation process, and to provide you with an overview of the
various objects that can be developed once a database has been created.

2. Objectives

By the end of this lab, you will be able to:
 Create a DB2 database
 Catalog a database for use
 Examine and manipulate objects within a database

3. Suggested reading

IBM DB2 Database for Linux, UNIX, and Windows Information Center
http://publib.boulder.ibm.com/infocenter/dstudio/v1r1m0/index.jsp

A repository with information describing how to use the DB2 family of products and
features

DB2 9 Fundamentals Certification Study Guide (Author: Roger E. Sanders)
Learn the basics and get ready for certification

4. Getting Started

4.1 Environment Setup Requirements
To complete this lab you will need the following:

• DB2 Academic Associate Bootcamp VMware image
• VMware Player 2.x or VMware Workstation 5.x or later

IBM DB2 9.7 Academic Workshop 76 of 335

4

4.2 Initial Steps

1. Start the VMware image by clicking the button in VMware.

2. At the login prompt, login with the following credentials:

 Username: db2inst1
 Password: password

3. Open a terminal window by right-clicking on the Desktop and choosing the Open

Terminal item.

4. Ensure that the DB2 Database Manager has been started by issuing the following
command at the prompt:

db2inst1@db2rules:~> db2start

Note: This command will only work if you logged in as the user db2inst1. If you
accidentally logged in as another user, type su – db2inst1 at the command
prompt password: password.

5. Throughout the lab, the SAMPLE database will be used to explore the features of
DB2. To create the SAMPLE database we need to first remove the existing
SAMPLE database by issuing the following command.

db2inst1@db2rules:~> db2 drop db sample

IBM DB2 9.7 Academic Workshop 77 of 335

5

5. Working with DB2 Databases

5.1 First Steps
First Steps is a graphical tool that helps get you started with DB2. As part of the DB2
installation process, the First Steps panel is displayed allowing the user to generate a
number of sample databases to work with:

Most users will want to create the SAMPLE database and use that to explore the
features of DB2. This panel can be invoked by issuing the command db2fs from a
command-line prompt.

db2inst1@db2rules:~> db2fs

First Steps requires a browser and browser profile to run and function properly. Select
Yes to create the browser profile and select OK to continue.

IBM DB2 9.7 Academic Workshop 78 of 335

6

In addition, issuing the command db2sampl from a command-line prompt will also
generate the SAMPLE database. Once the SAMPLE button has been selected, an
additional panel is displayed to determine where the SAMPLE database will be created.

IBM DB2 9.7 Academic Workshop 79 of 335

7

When creating the SAMPLE database, it is recommended that you select the XML
and SQL objects and data option. This option will generate the database in UTF-8
(Unicode) format that will allow you to manipulate XML objects. If you do not select
the XML option, you will not be able to add XML objects to your SAMPLE database.

Now let's move on to creating a DB2 database without a GUI.

5.2 Command Line & Associated Database Files
If you created the SAMPLE database using the First Steps method describe above, drop
the sample database so we can see how to create it using the command line.

IBM DB2 9.7 Academic Workshop 80 of 335

8

db2inst1@db2rules:~> db2 drop db sample

As mention in the previous section, we can issue the command db2sampl from a
command-line prompt in order to also generate the SAMPLE database.

db2inst1@db2rules:~> db2sampl

When you create a database, DB2 creates a number of files. These files include log
files, configuration information, history files, and three table spaces. These table spaces
are:

• SYSCATSPACE: This is where the DB2 system catalog is kept that tracks all of
the metadata associated with DB2 objects.

• TEMPSPACE1: A temporary work area where DB2 can place intermediate
results.

• USERSPACE1: A place where all user objects (tables, indexes) reside by
default.

Let’s take a look at these tablespaces that DB2 created when we issued to create the
SAMPLE database. Connect to the sample database (discussed in further details later)
and list the tablespaces for the database by issuing the following commands:

db2inst1@db2rules:~> db2 connect to sample

db2inst1@db2rules:~> db2 list tablespaces

You should observe an output similar to the following:

db2inst1@db2rules:~> db2 list tablespaces

 Tablespaces for Current Database

 Tablespace ID = 0
 Name = SYSCATSPACE
 Type = Database managed space
 Contents = All permanent data. Regular table space.
 State = 0x0000
 Detailed explanation:
 Normal

 Tablespace ID = 1
 Name = TEMPSPACE1
 Type = System managed space
 Contents = System Temporary data
 State = 0x0000
 Detailed explanation:
 Normal

 Tablespace ID = 2
 Name = USERSPACE1
 Type = Database managed space
 Contents = All permanent data. Large table space.
 State = 0x0000
 Detailed explanation:
 Normal

IBM DB2 9.7 Academic Workshop 81 of 335

9

As mentioned, when a DB2 database instance or a database is created, a corresponding
configuration file is created with default parameter values. You can modify these
parameter values to improve performance and other characteristics of the instance or
database.

For simple applications, this default configuration may be sufficient for your needs.
However you can modify these parameter values to improve performance and other
characteristics of the instance or database.

Configuration files contain parameters that define values such as the resources
allocated to the DB2 database products and to individual databases, and the diagnostic
level. There are two types of configuration files:

• The database manager configuration file for each DB2 instance
• The database configuration file for each individual database

The database manager configuration file is created when a DB2 instance is created.
The parameters it contains affect system resources at the instance level, independent of
any one database that is part of that instance. Values for many of these parameters can
be changed from the system default values to improve performance or increase
capacity, depending on your system's configuration.

db2inst1@db2rules:~> db2 get dbm cfg

You can also append the show detail option to view current and delayed values:

db2inst1@db2rules:~> db2 get dbm cfg show detail

A database configuration file is created when a database is created, and resides where
that database resides. There is one configuration file per database. Its parameters
specify, among other things, the amount of resource to be allocated to that database.
Values for many of the parameters can be changed to improve performance or increase
capacity. Different changes may be required, depending on the type of activity in a
specific database.

To view the database configuration, issue the following command (make sure you are
connected to a database first):

db2inst1@db2rules:~> db2 get db cfg

Again, as with the database manager configuration, you can also append the show
detail option to view current and delayed values:

db2inst1@db2rules:~> db2 get db cfg show detail

The following figure show the relationship between database objects and their
corresponding configuration file:

IBM DB2 9.7 Academic Workshop 82 of 335

10

5.3 Connecting to a DB2 Database
Before working with a database, a user or application program must establish a
connection with that database. You connect to databases using the CONNECT
statement.

5.3.1 Using CONNECT
Before you can issue a SQL statement, you have to connect to a database.

To connect to our sample database, enter the command:

db2inst1@db2rules:~> db2 CONNECT TO sample USER db2inst1 USING password

You can also connect to a database and have DB2 prompt you for the password by
issuing the command:

db2inst1@db2rules:~> db2 CONNECT TO sample USER db2inst1

Or simply to connect to a database using the default user ID, issue the command:

db2inst1@db2rules:~> db2 CONNECT TO sample

At any point in time you can also issue the following command to view the currently
active databases:

db2inst1@db2rules:~> db2 list active databases

You should see an output similar to the following:

 Active Databases

Database name = SAMPLE
Applications connected currently = 1
Database path = /home/db2inst1/NODE0000/SQL00001/

IBM DB2 9.7 Academic Workshop 83 of 335

11

Anytime that you need to terminate the connection to the database, you can issue the
TERMINATE command:

db2inst1@db2rules:~> db2 terminate

However, before a client application can access a remote database, the database must
be cataloged on the client. When you create a database, the database is automatically
cataloged in the local database directory and another entry in the system database
directory with a database alias that is the same as the database name. This is why we
were able to establish a connection to the sample database with the commands
specified above.

5.3.2 Cataloging a DB2 Database
So, why does a database have to be cataloged? Without this information, an application
can't connect to a database! DB2 has multiple directories that are used to access
databases. These directories allow DB2 to find databases known to it whether they are
on the local system or a remote system. The system database directory contains a list
and pointer indication where each of the known databases can be found.

To put an entry into any of these directories, a CATALOG command is used. To remove
an entry, the UNCATALOG command is used.

As previously mention, we were able to connect to the SAMPLE database because the
database was already cataloged by default upon creation.

To view the entries in the system databases directory, execute the command:

db2inst1@db2rules:~> db2 list database directory

The output should be similar to the following:

 System Database Directory

 Number of entries in the directory = 1

Database 1 entry:

 Database alias = SAMPLE
 Database name = SAMPLE
 Local database directory = /home/db2inst1
 Database release level = d.00
 Comment =
 Directory entry type = Indirect
 Catalog database partition number = 0
 Alternate server hostname =
 Alternate server port number =

IBM DB2 9.7 Academic Workshop 84 of 335

12

Here we can see the sample database cataloged on our system. This information is
used to connect to the database.

However, if this information was not set here (ie, the database was not cataloged upon
creation) we would not be able to connect to the database.

Let’s take a look at how it would affect us if the database was not cataloged. Issue the
UNCATALOG command on the SAMPLE database:

db2inst1@db2rules:~> db2 uncatalog database sample

Then try connecting to the SAMPLE database.

db2inst1@db2rules:~> db2 connect to sample

Notice that it is not possible. You will most likely receive a SQL1013N message:

SQL1013N The database alias name or database name "SAMPLE"
could not be found. SQLSTATE=42705

The fact is that the sample database and the files associated with it still exist within our
system, however the information in the database directory does not exist for the DB2
client to establish a connection. You can verify this by checking the system database
directory as before:

db2inst1@db2rules:~> db2 list database directory

SQL1057W The system database directory is empty. SQLSTATE=01606

Catalog the database by entering the following commands in the command line
processor:

db2 catalog database database_name as database_alias on path/drive

where:

• database_name represents the name of the database you want to catalog.
• database_alias represents a local nickname for the database you want to

catalog.
• path/drive specifies the path on which the database being cataloged resides.

To catalog the database called sample so that it has the local database alias mysample,
enter the following command:

db2inst1@db2rules:~> db2 catalog database sample as mysample

Issue the following command to check the database directory for this new entry:

db2inst1@db2rules:~> db2 list database directory

IBM DB2 9.7 Academic Workshop 85 of 335

13

System Database Directory

 Number of entries in the directory = 1

Database 1 entry:

 Database alias = MYSAMPLE
 Database name = SAMPLE
 Local database directory = /home/db2inst1
 Database release level = d.00
 Comment =
 Directory entry type = Indirect
 Catalog database partition number = 0
 Alternate server hostname =
 Alternate server port number =

Now, since the database is cataloged and the information is back in the database
directory, we can connect to it using the alias we have specified with the catalog
statement above and issue our SQL statements.

db2inst1@db2rules:~> db2 connect to mysample

Before continuing on with the next section, issue a TERMINATE command to terminate
the connection to the SAMPLE database.

db2inst1@db2rules:~> db2 terminate

6. Working with DB2 Data Objects

Before we get started with understanding and creating some basic and fundamental
database objects, let us create a new database which we will use to highlight some of
the concepts within this section.

db2inst1@db2rules:~> db2 create db testdb

Once the TESTDB database is created, issue a CONNECT statement, as show below,
to establish a connection to the newly created database.

db2inst1@db2rules:~> db2 connect to testdb

6.1 Tables
A relational database presents data as a collection of tables. A table consists of data
logically arranged in columns and rows (generally known as records).

IBM DB2 9.7 Academic Workshop 86 of 335

14

Tables are created by executing the CREATE TABLE SQL statement. In its simplest
form, the syntax for this statement is:

CREATE TABLE [TableName]
([ColumnName] [DataType], ...)

where:
• TableName identifies the name that is to be assigned to the table to be created.
• ColumnName identifies the unique name that is to be assigned to the column that

is to be created.
• DataType identifies the data type to be assigned to the column to be created;

the data type specified determines the kind of data values that can be stored in
the column.

Thus, if you wanted to create a table named EMPLOYEES that has three columns, one
of which is used to store numeric values and two that are used to store character string
values, as shown below,

Column Type

empid INTEGER

name CHAR(50)

Dept CHAR(9)

you could do so by executing a CREATE TABLE SQL statement that looks something
like this:

db2inst1@db2rules:~> db2 "CREATE TABLE employees

(empid INTEGER,
name CHAR(50),
dept INTEGER)"

You can execute a DESCRIBE command to view the basic properties of the table:

db2inst1@db2rules:~> db2 describe table employees

 Data type Column
Column name schema Data type name Length Scale Nulls
------------------------------- --------- ------------------- ---------- ----- -----
EMPID SYSIBM INTEGER 4 0 Yes
NAME SYSIBM CHARACTER 50 0 Yes
DEPT SYSIBM INTEGER 4 0 Yes

 3 record(s) selected.

But, now we notice that the department data type was specified as INTEGER not CHAR
as originally intended. Therefore we need a way to change this data type from
INTEGER to CHARACTER. We can do this using the alter statement.

IBM DB2 9.7 Academic Workshop 87 of 335

15

Alter

db2inst1@db2rules:~> db2 "alter table employees alter column dept
set data type char(9)"

We can view the change by issuing the DESCRIBE command once again:

db2inst1@db2rules:~> db2 describe table employees

 Data type Column
Column name schema Data type name Length Scale Nulls
------------------------------- --------- ------------------- ---------- ----- -----
EMPID SYSIBM INTEGER 4 0 Yes
NAME SYSIBM CHARACTER 50 0 Yes
DEPT SYSIBM CHARACTER 9 0 Yes

 3 record(s) selected.

Notice now that the DEPT column is now using a CHARACTER data type opposed to an
INTEGER data type.

So now that we have our table created to our preference, we can start to input data for
the table to hold. We can do some very simple data manipulation language statements,
such as insert, update, and delete.

Insert

Let’s insert some basic data into our table with the following statement:

db2inst1@db2rules:~> db2 "INSERT INTO employees (EMPID, NAME, DEPT)

VALUES (1, 'Adam', 'A01 '),
(2, 'John', 'B01'),
(3, 'Peter', 'B01'),
(4, 'William', 'A01')"

You should receive an SQL0668N message:

SQL0668N Operation not allowed for reason code "7" on table
"DB2INST1.EMPLOYEES". SQLSTATE=57016

What does this mean? If we issue the “? SQL0668N” command, we can view the
problem explanation and user response of the particular message.

db2inst1@db2rules:~> db2 "? SQL0668N"

SQL0668N Operation not allowed for reason code "<reason-code>" on table
 "<table-name>".

Explanation:

Access to table "<table-name>" is restricted. The cause is based on the
following reason codes "<reason-code>":

IBM DB2 9.7 Academic Workshop 88 of 335

16

…

7

 The table is in the reorg pending state. This can occur after
 an ALTER TABLE statement containing a REORG-recommended
 operation.

…

User response:

…

7
 Reorganize the table using the REORG TABLE command.

…

So, now we can conclude that the reason we cannot enter this data is that we did an
ALTER on the table previously and it was placed in a reorg pending state. Therefore to
resolve this issue, we should do as is recommended and “Reorganize the table using the
REORG TABLE command:”

db2inst1@db2rules:~> db2 reorg table employees

Now try again and issue the insert statement as was shown previously:

db2inst1@db2rules:~> db2 "INSERT INTO employees (EMPID, NAME, DEPT)

VALUES (1, 'Adam', 'A01 '),
(2, 'John', 'B01'),
(3, 'Peter', 'B01'),
(4, 'William', 'A01')"

To verify the data has been inserted, you can issue a very basic SELECT statement on
the table.

db2inst1@db2rules:~> db2 "select * from employees"

EMPID NAME DEPT
----------- -- --------
-
 1 Adam A01
 2 John B01
 3 Peter B01
 4 William A01

 4 record(s) selected.

Update

IBM DB2 9.7 Academic Workshop 89 of 335

17

We can also make update operations for our table. For example, Peter needs to move
from department B01 to department A01. We can make the change in the table with the
following update statement:

db2inst1@db2rules:~> db2 "update employees set dept='A01' where
name='Peter'"

Again, verify that the update has taken place.

db2inst1@db2rules:~> db2 "select * from employees"

EMPID NAME DEPT
----------- -- ---------
 1 Adam A01
 2 John B01
 3 Peter A01
 4 William A01

 4 record(s) selected.

Delete

Finally, let’s try one more operation on our table, and that is to delete one of the entries.
For example, William is no longer one of our employees; therefore we should delete him
from our table. We can do so with the following DELETE statement:

db2inst1@db2rules:~> db2 "delete employees where name='William'"

Again, verify that the delete has taken place.

db2inst1@db2rules:~> db2 "select * from employees"

EMPID NAME DEPT
----------- -- ---------
 1 Adam A01
 2 John B01
 3 Peter A01

 3 record(s) selected.

6.1.1 Schemas
A schema is a collection of named objects. Schemas provide a logical classification of
objects in the database. A schema can contain tables, views, nicknames, triggers,
functions, packages, and other objects.

Most objects in a database are named using a two−part naming convention. The first
(leftmost) part of the name is called the schema name or qualifier, and the second
(rightmost) part is called the object name. Syntactically, these two parts are
concatenated and delimited with a period:

schema_name.object_name

IBM DB2 9.7 Academic Workshop 90 of 335

18

A schema is also an object in the database. A schema can be created in 2 ways mainly:
1. It can be implicitly created when another object is created, provided that the user

has IMPLICIT_SCHEMA database authority.
2. It is explicitly created using the CREATE SCHEMA statement with the current

user.

Let’s take a look at the schema under which our EMPLOYEES table resides. We can do
this by listing the tables within our database after we have established a connection.

db2inst1@db2rules:~> db2 list tables

The output will show a column specifying the Schema which each specific table belongs
to:

Table/View Schema Type Creation time
------------------------------- --------------- ----- --------------------------
EMPLOYEES DB2INST1 T 2010-03-30-16.37.05.046385

 1 record(s) selected.

This is an example where the schema will be implicitly created when another object is
created. So this means when creating our EMPLOYEES table, a schema name was
created implicitly as we did not specify any. By default, DB2 is going to use the ID of the
user who created the object as the schema name. This is shown in the output above.

Now, as mentioned, we can also explicitly create a schema and then assign objects to it
upon creation. Let’s take an example. We want to create a new schema named
MYSCHEMA and create a new table, STORE under this newly created schema. We
also want the authorization of this schema to have the authorization ID of our current
user (db2inst1).

First, we need to create the schema using the CREATE SCHEMA command:

CREATE SCHEMA <name> AUTHORIZATION <name>

In our case,

db2inst1@db2rules:~> db2 CREATE SCHEMA myschema AUTHORIZATION db2inst1

To list all schemas available in the corresponding database you can issue the following
command after a connection to the database is established:

db2inst1@db2rules:~> db2 select schemaname from syscat.schemata

SCHEMANAME

DB2INST1
MYSCHEMA
NULLID
SQLJ

IBM DB2 9.7 Academic Workshop 91 of 335

19

SYSCAT
SYSFUN
SYSIBM
SYSIBMADM
SYSIBMINTERNAL
SYSIBMTS
SYSPROC
SYSPUBLIC
SYSSTAT
SYSTOOLS

 14 record(s) selected.

Next, we have to create the table which will belong to MYSCHEMA opposed to
DB2INST1. We can do this using the following statement:

db2inst1@db2rules:~> db2 "CREATE TABLE myschema.store

(storeid INTEGER,
address CHAR(50))"

(Note: The table name specified must be unique within the schema the table is to be
created in.)

We can now list the tables for this new schema:

db2inst1@db2rules:~> db2 list tables for schema myschema

Table/View Schema Type Creation time
------------------------------- --------------- ----- --------------------------
STORE MYSCHEMA T 2010-03-31-00.16.27.223473

 1 record(s) selected.

We could have also issued the following command to see tables for ALL schemas:

db2inst1@db2rules:~> db2 list tables for all

Now, you may be wondering why anyone would want to explicitly create a schema using
the CREATE SCHEMA statement. The primary reason for explicitly creating a schema
has to do with access control. An explicitly created schema has an owner, identified
either by the authorization ID of the user who executed the CREATE SCHEMA
statement or by the authorization ID provided to identify the owner when the schema
was created (db2inst1 in our case). The schema owner has the authority to create, alter,
and drop any object stored in the schema; to drop the schema itself; and to grant these
privileges to other users.

Finally, besides the benefit of access control, we can also have tables with the same
name within a single database. This is because the name of each object needs to be
unique only within its schema. Let’s take a look.

IBM DB2 9.7 Academic Workshop 92 of 335

20

We already have a table called EMPLOYEES within our db2inst1 schema; now lets
create another table named employees but under myschema:

db2inst1@db2rules:~> db2 "CREATE TABLE myschema.employees

(storeid INTEGER,
address CHAR(50)) "

It is successful because it is under a different schema and still within the same database!

In all these examples we used tables, but schemas also apply to objects such as: views,
indexes, user−defined data types, user−defined functions, nicknames, packages,
triggers, etc.

6.2 Views
A view is an alternative way of representing data that exists in one or more tables. A
view can include all or some of the columns from one or more base tables.

A view can:

• Control access to a table
• Make data easier to use
• Simplify authorization by granting access to a view without granting access to the

table
• Show only portions of data in the table
• Show summary data for a given table
• Combine two or more tables in meaningful ways
• Show only the selected rows that are pertinent to the process that uses the view

In this section we will create a view that will omit certain data from a table, thereby
shielding some table data from end users.

In this example, we want to create a view of the EMPLOYEES which will omit the
department employee information and rename the first two columns.

Meaning, this is what we want to achieve:

Column Type

employee_id INTEGER
first_name CHAR(50)
Dept CHAR(9)

To define the view, we must use the CREATE VIEW statement as follows:

db2inst1@db2rules:~> db2 "CREATE VIEW empview (employee_id, first_name)

AS SELECT EMPID, NAME
FROM employees"

IBM DB2 9.7 Academic Workshop 93 of 335

21

Verify the view has been created:

db2inst1@db2rules:~> db2 list tables

Table/View Schema Type Creation time
------------------------------- --------------- ----- --------------------------
EMPLOYEES DB2INST1 T 2010-03-30-16.37.05.046385
EMPVIEW DB2INST1 V 2010-03-31-21.22.26.130570

 2 record(s) selected.

Now, describe the view to ensure it is setup the way we originally intended:

db2inst1@db2rules:~> db2 describe table empview

 Data type Column
Column name schema Data type name Length Scale Nulls
------------------------------- --------- ------------------- ---------- ----- ------
EMPLOYEE_ID SYSIBM INTEGER 4 0 Yes
FIRST_NAME SYSIBM CHARACTER 50 0 Yes

 2 record(s) selected.

This matches what we have initially planned. Now for a final test, let’s issue a SELECT *
statement to retrieve all data from the view:

db2inst1@db2rules:~> db2 "select * from empview"

EMPLOYEE_ID FIRST_NAME
----------- --
 1 Adam
 2 John
 3 Peter

 3 record(s) selected.

Notice how the column names have changed appropriately as desired, and we cannot
receive any data from the department column as we have not included it with our view.
We could have also similarly created views which will combine data from different base
tables and also based on other views or on a combination of views and tables. We will
leave those out of our examples at this point in time but it is important to know that these
options are possible.

Although views look similar to base tables, they do not contain real data. Instead, views
refer to data stored in other base tables. Only the view definition itself is actually stored
in the database. (In fact, when changes are made to the data presented in a view, the
changes are actually made to the data stored in the base table(s) the view references.)

For example, update the view and verify that the underlying table contains the
corresponding change.

IBM DB2 9.7 Academic Workshop 94 of 335

22

db2inst1@db2rules:~> db2 "update empview

SET FIRST_NAME='Piotr'
WHERE employee_id=3"

Verify.

db2inst1@db2rules:~> db2 "SELECT * FROM employees"

EMPID NAME DEPT
----------- -- ---------
 1 Adam A01
 2 John B01
 3 Piotr A01

 3 record(s) selected.

6.3 Aliases
Aliases are alternative names for tables or views. An alias can be referenced the same
way the table or view the alias refers to can be referenced.

Aliases are publicly referenced names, so no special authority or privilege is required to
use them. However, access to the table or view that an alias refers to still requires
appropriate authorization.

Aliases can be created by executing the CREATE ALIAS SQL statement.

Let us try and see how to create an alias (named EMPINFO) for our EMPLOYEES table
which we have been working with in this section.

db2inst1@db2rules:~> db2 CREATE ALIAS empinfo FOR employees

Now we have this empinfo alias that we can use to reference the underlying employees
table opposed to directly using the table name.

To view this alias, you can issue a command to list the tables:

db2inst1@db2rules:~> db2 list tables

Table/View Schema Type Creation time
------------------------------- --------------- ----- --------------------------
EMPINFO DB2INST1 A 2010-07-05-11.05.48.124653
EMPLOYEES DB2INST1 T 2010-07-05-16.37.05.046385
EMPVIEW DB2INST1 V 2010-07-05-16.30.40.431174

 3 record(s) selected.

Let’s try a simple select statement with our newly created alias

IBM DB2 9.7 Academic Workshop 95 of 335

23

db2inst1@db2rules:~> db2 "SELECT * FROM empinfo "

EMPID NAME DEPT
----------- -- ---------
 1 Adam A01
 2 John B01
 3 Peter A01

 3 record(s) selected.

As you can see, it provides the same output as selecting from the original table name,
because after all it is referencing the same table.

Like tables and views, an alias can be created, dropped, and have comments associated
with it. Unlike tables (but similar to views), aliases can refer to other aliases—a process
known as chaining. We can take an example of this.

Right now we have our table EMPLOYEES and our EMPINFO alias. We can create this
chain by creating another alias (REFEMPINFO) which will reference the EMPINFO alias.
The situation can be represented by the following diagram:

To do this simply execute the CREATE ALIAS command again, but this time reference
the EMPINFO alias opposed to the underlying EMPLOYEES base table name:

db2inst1@db2rules:~> db2 CREATE ALIAS refempinfo FOR empinfo

List the tables to see this new alias:

db2inst1@db2rules:~> db2 list tables

Table/View Schema Type Creation time
------------------------------- --------------- ----- --------------------------
EMPINFO DB2INST1 A 2010-07-05-11.05.48.124653
EMPLOYEES DB2INST1 T 2010-07-05-16.37.05.046385
EMPVIEW DB2INST1 V 2010-07-05-16.30.40.431174
REFEMPINFO DB2INST1 A 2010-07-05-16.42.36.059937

 4 record(s) selected.

Again we can query this alias which will retrieve the data from the underlying table the
name references:

db2inst1@db2rules:~> db2 "SELECT * FROM refempinfo"

EMPID NAME DEPT

IBM DB2 9.7 Academic Workshop 96 of 335

24

----------- -- ---------
 1 Adam A01
 2 John B01
 3 Peter A01

 3 record(s) selected.

In conclusion, by using aliases, SQL statements can be constructed in such a way that
they are independent of the qualified names that identify the base tables or views they
reference.

6.4 Indexes
An index is an ordered set of pointers to rows of a table. DB2 can use indexes to ensure
uniqueness and to improve performance by clustering data, partitioning data, and
providing efficient access paths to data for queries. In most cases, access to data is
faster with an index than with a scan of the data.

The three main purposes of indexes are:

• To improve performance.
• To ensure that a row is unique.
• To cluster the data.

An index is stored separately from the data in the table. Each index is physically stored
in its own index space.

We will work with two examples of indexes in this section. One will illustrate how
indexes can benefit to ensure that a row is unique and the other to show how we can
improve performance of queries on the database.

In our previous example, we have our EMPLOYEES table with the following structure:

Column Type

empid INTEGER

name CHAR(50)

Dept CHAR(9)

When we created this table, we didn’t define any primary key or unique constraints.
Thus we can have multiple entries into our table with the same employee ID which is not
a situation which we want to have. Therefore, we can use indexes to ensure that there
are not two entries in the table with the same value for EMPID:

db2inst1@db2rules:~> db2 "CREATE UNIQUE INDEX unique_id

ON employees(empid) "

IBM DB2 9.7 Academic Workshop 97 of 335

25

NOTE: You will receive the following message if you try to create this unique index with
already duplicate entries for the key you are creating the index with. There cannot be
duplicate entries when creating a unique index:
SQL0603N A unique index cannot be created because the table
contains data that would result in duplicate index entries.
SQLSTATE=23515

Verify the index has been created with the DESCRIBE command:

db2inst1@db2rules:~> db2 DESCRIBE INDEXES FOR TABLE employees

The output will look similar to the following:

Index Index Unique Number of Index Index
schema name rule columns type partitioning
---------- ----------- -------- ----------- ----------------- --------------
DB2INST1 UNIQUE_ID U 1 RELATIONAL DATA -

 1 record(s) selected.

The unique rule column determines whether the index is unique or not. There are three
different types of unique rules

• D = means duplicate allowed
• P = means primary index
• U = means unique index

Now, lets try to insert a row with a employee ID which already exists (ie, EMPID=3)

db2inst1@db2rules:~> db2 "INSERT INTO employees VALUES(3, 'William',
'A01')"

You should receive an error message saying that:

SQL0803N One or more values in the INSERT statement, UPDATE
statement, or foreign key update caused by a DELETE statement are
not valid because the primary key, unique constraint or unique
index identified by "1" constrains table "DB2INST1.EMPLOYEES"
from having duplicate values for the index key.
SQLSTATE=23505

This means that our unique index is working properly because we cannot insert a row
with an employee ID which already exists (the property on which we defined our index).

Also, as mentioned, index can help improve performance. Something that we can do
with indexes is to also collect statistics. Collecting index statistics will allow the optimizer
to evaluate whether an index should be used to resolve a query.

We can create an index to collect statistics automatically:

IBM DB2 9.7 Academic Workshop 98 of 335

26

db2inst1@db2rules:~> db2 "CREATE INDEX idx
ON employees(dept) COLLECT STATISTICS "

You can view the index and its properties with the DESCRIBE command as before:

db2inst1@db2rules:~> db2 DESCRIBE INDEXES FOR TABLE employees

Except for changes in performance, users of the table are unaware that an index is in
use. DB2 decides whether to use the index to access the table.

Be aware that indexes have both benefits and disadvantages. A greater number of
indexes can simultaneously improve the access performance of a particular transaction
and require additional processing for inserting, updating, and deleting index keys. After
you create an index, DB2 maintains the index, but you can perform necessary
maintenance, such as reorganizing it or recovering it, as necessary.

6.5 Sequences
A sequence is an object that is used to generate data values automatically.

Sequences have the following characteristics:

• Values generated can be any exact numeric data type that has a scale of zero.
• Consecutive values can differ by any specified increment value.
• Counter values are recoverable (reconstructed from logs when necessary).
• Values generated can be cached to improve performance.

In addition, sequences can generate values in one of three ways:

• By incrementing or decrementing by a specified amount, without bounds
• By incrementing or decrementing by a specified amount to a user−defined limit

and stopping
• By incrementing or decrementing by a specified amount to a user−defined limit,

and then cycling back to the beginning and starting again

Let’s begin right away with creating a sequence named emp_id that starts at 4 and
increments by 1, does not cycle, and cashes 5 values at a time. To do so, we must
issue to following statement:

db2inst1@db2rules:~> db2 "CREATE SEQUENCE emp_id

START WITH 4
INCREMENT BY 1
NO CYCLE
CACHE 5"

We will use this sequence to insert a new employee into our table without having to
explicitly specify an individual employee ID; the sequence will take care of this for us.

IBM DB2 9.7 Academic Workshop 99 of 335

27

To facilitate the use of sequences in SQL operations, two expressions are available:
PREVIOUS VALUE and NEXT VALUE. The PREVIOUS VALUE expression returns the
most recently generated value for the specified sequence, while the NEXT VALUE
expression returns the next sequence value.

Create a new employee named Daniel in department B01 using the NEXT VALUE of our
newly created sequence:

db2inst1@db2rules:~> db2 "INSERT INTO EMPLOYEES

VALUES (NEXT VALUE FOR emp_id, 'Daniel',
'B01')"

Do a select statement of the table to view the results of how our sequence worked.

db2inst1@db2rules:~> db2 "SELECT * FROM employees"

EMPID NAME DEPT
----------- -- ---------
 1 Adam A01
 2 John B01
 3 Piotr A01
 4 Daniel B01

 4 record(s) selected.

We see that our sequence worked properly. Next time we use the NEXT VALUE
statement we will increment by 1. For example

db2inst1@db2rules:~> db2 "INSERT INTO EMPLOYEES

VALUES (NEXT VALUE FOR emp_id, 'Stan',
'B01')"

db2inst1@db2rules:~> db2 "SELECT * FROM employees"

EMPID NAME DEPT
----------- -- ---------
 1 Adam A01
 2 John B01
 3 Piotr A01
 4 Daniel B01
 5 Stan B01

 5 record(s) selected.

However, since we are caching 5 values at a time, we have to be careful because this
value identifies the number of values of the identity sequence that are to be
pre−generated and kept in memory. (Pre-generating and storing values in the cache
reduces synchronous I/O to the log when values are generated for the sequence.
However, in the event of a system failure, all cached sequence values that have not
been used in committed statements are lost; that is, they can never be used.)

IBM DB2 9.7 Academic Workshop 100 of 335

28

Let’s take a look. Terminate the connection and reconnect to the database

db2inst1@db2rules:~> db2 terminate

db2inst1@db2rules:~> db2 connect to testdb

Now try the same operation we did previously to add an entry using the sequence and
then verify with SELECT *.

db2inst1@db2rules:~> db2 "INSERT INTO EMPLOYEES

VALUES (NEXT VALUE FOR emp_id, 'Bill',
'B01')"

db2inst1@db2rules:~> db2 "SELECT * FROM employees"

EMPID NAME DEPT
----------- -- ---------
 1 Adam A01
 2 John B01
 9 Bill B01
 3 Piotr A01
 4 Daniel B01
 5 Stan B01

 6 record(s) selected.

Notice that the next value is 9 NOT 6. Why? ..because we specified to cache the next 5
values in the memory before terminating the connection. Ie, we had values: 4, 5, 6, 7, 8
in memory. When the connection was lost (system failure) we lost these 5 values and
now cannot use them again, thus we had to start the sequence with the next value after
those which were cashed.

6.6 Triggers
A trigger is used to define a set of actions that are to be executed whenever an insert,
update, or delete operation is performed against a table or updatable view. Triggers are
often used to enforce data integrity rules and business rules.

You can use triggers to:

• Validate input data
• Generate a value for a newly-inserted row
• Read from other tables for cross-referencing purposes
• Write to other tables for audit-trail purposes

Let’s jump straight into an example. We want to create a trigger which increase the
employee ID number (increasing EMPID by 1) each time a new person is added to the
EMPLOYEES table.

To create a trigger from the command line, enter:

IBM DB2 9.7 Academic Workshop 101 of 335

29

CREATE TRIGGER <name>

<action> ON <table_name>
<operation>
<triggered_action>

The following statement creates a trigger which satisfies our condition above.

db2inst1@db2rules:~> db2 "CREATE TRIGGER new_emp

AFTER INSERT ON EMPLOYEES
FOR EACH ROW
UPDATE employees SET empid = empid + 1"

Let’s check the current values for our employees table so we can see the comparison of
results after the trigger is fired.

EMPID NAME DEPT
----------- -- ---------
 1 Adam A01
 2 John B01
 3 Piotr A01
 4 Daniel B01
 5 Stan B01
 9 Bill B01

 6 record(s) selected.

Now, let’s see if it works! Issue a simple insert statement on the employees table and
then SELECT * to verify if our trigger actually does update the employee ID by 1 when
we insert into the table:

db2inst1@db2rules:~> db2 "INSERT INTO EMPLOYEES

VALUES(10, 'Steve', 'B01') "

db2inst1@db2rules:~> db2 “SELECT * FROM EMPLOYEES”

EMPID NAME DEPT
----------- -- ---------
 2 Adam A01
 3 John B01
 4 Piotr A01
 10 Bill B01
 11 Steve B01
 5 Daniel B01
 6 Stan B01

 7 record(s) selected.

Notice that all the employee IDs have increased by a value of 1. This includes the newly
added row because we created an AFTER trigger, meaning the increase operation took
place after the row was inserted into the table.

IBM DB2 9.7 Academic Workshop 102 of 335

30

We won’t go through more example of this process because it can be quite repetitive,
but it is very important to know that triggers can be specified for INSERT, UPDATE,
DELETE events, and the possible activation times are: BEFORE, AFTER, INSTEAD
OF of a particular query.

Benefits:

• Faster application development: Because a trigger is stored in the database, you
do not have to code the actions that it performs in every application.

• Easier maintenance: Once a trigger is defined, it is automatically invoked when
the table that it is created on is accessed.

• Global enforcement of business rules: If a business policy changes, you only
need to change the trigger and not each application program.

Finish the lab by terminating all the connections and deleting the databases.

db2inst1@db2rules:~> db2 force applications all
db2inst1@db2rules:~> db2 drop db testdb
db2inst1@db2rules:~> db2 drop db mysample

7. Summary

This exercise introduced you to the objects that make up a DB2 database, and to
the factors that affect how the database is created. You should now have a solid
introduction to DB2 objects in terms of reasoning as to why we use them and
how to create them as well. The remaining modules will make use of the
information in this section; therefore it is quite important that everything is clear
on these base concepts.

IBM DB2 9.7 Academic Workshop 103 of 335

© 2010 IBM Corporation

Information Management

Information Management Ecosystem Partnerships
IBM Canada Lab

Summer/Fall 2010

Introduction to SQL

 2 © 2010 IBM Corporation

Information Management

Agenda

� SQL

� Data Definition Language

� Data Manipulation Language

� JOINs

� Data Control Language

� Transaction Control Statements

IBM DB2 9.7 Academic Workshop 104 of 335

 3 © 2010 IBM Corporation

Information Management

SQL in a nutshell

� Standard language of relational database access is SQL
(Structured Query Language), designed for accessing tabular data

� Data Definition Language (DDL)
� Defines properties of data objects

CREATE, ALTER, DROP, TRANSFER OWNERSHIP

� Data Manipulation Language (DML)
� Used to retrieve, add, edit and delete data

SELECT, INSERT, UPDATE, DELETE

� Data Control Language (DCL)
� Controls access to databases and data objects

GRANT, REVOKE

� Transaction Control Languages (TCL)
� Groups DML statements into transactions that can collectively be

applied to a database or undone in the event of a failure
COMMIT, ROLLBACK, SAVEPOINT

 4 © 2010 IBM Corporation

Information Management

Data Definition Language

� To create, modify, delete objects in a database, SQL Data
Definition Language (DDL) is used.

� DDL has four basic SQL statements:

�CREATE

�ALTER

�DROP

�DECLARE

IBM DB2 9.7 Academic Workshop 105 of 335

 5 © 2010 IBM Corporation

Information Management

CREATE Statement

� Table

� Index

� Schema

� View

� User-defined function

� User-defined data type

� Buffer pool

� Stored procedures

� Trigger

� Alias

� Method

� Nickname

� Sequence

� Table space

Used to CREATE database objects

CREATE TABLE <table name>CREATE TABLE <table name>...

CREATE SCHEMA <schema name>...

 6 © 2010 IBM Corporation

Information Management

ALTER Statement

� Table

� Table space

� Database partition

� Procedure

� Function

� Nickname

� Schema

� Sequence

� Type

� View

� Method

� User mapping

� Buffer pool

� Index

Used to CHANGE database objects

ALTER TABLE <table name>...

ALTER INDEX <index name>...

IBM DB2 9.7 Academic Workshop 106 of 335

 7 © 2010 IBM Corporation

Information Management

DROP Statement

� Can drop any object created with CREATE <database object >

and DECLARE <table> statements.

Used to REMOVE database objects

DROP TABLE <table name>...

DROP INDEX <index name>...

 8 © 2010 IBM Corporation

Information Management

Data Manipulation Language

� Retrieving Data
� Select Statement

� Inserting Data
� Insert Statement

� Updating Data
� Update Statement

� Deleting Data
� Delete Statement

IBM DB2 9.7 Academic Workshop 107 of 335

 9 © 2010 IBM Corporation

Information Management

Retrieving Data � Select Statement

� The SELECT statement is used to retrieve data from a
database table

�Syntax:

SELECT <%EXPRESSIONS%>

FROM <%TABLE REFERENCES%>

� Expressions: Column names, values, function calls etc.

� Table References is a source that returns tabular data
�Usually a list of table names
�Subqueries or tabular functions are also accepted

 10 © 2010 IBM Corporation

Information Management

Additional Clauses � Where,Order By,Group By

� WHERE allows you to filter the query
�Specify filters based on expressions

� GROUP BY allows you to consolidate the query
�Groups by the field you specify
�This function allows you to utilize aggregate functions

� HAVING also allows you to filter the aggregate data

� ORDER BY allows you to sort the query
�Specify the sort order of the returned set
�Can specify ASC, DESC

� e.g. ORDER BY NAME DESC

� Clauses must appear in the order above after the select
statement

IBM DB2 9.7 Academic Workshop 108 of 335

 11 © 2010 IBM Corporation

Information Management

Select Statement

EXAMPLES

SELECT *
FROM EMPLOYEE

� Retrieves all fields in the employee table
� Note: * will return all fields

EMPNO FNAME LNAME

161 Bob Joe

143 Steven Craig

155 John Smith

EMPNO FNAME LNAME

161 Bob Joe

143 Steven Craig

155 John Smith

 12 © 2010 IBM Corporation

Information Management

Select Statement

SELECT EMPNO, FNAME, LNAME
FROM EMPLOYEE WHERE EMPNO > 150

� Retrieves the EMPNO,FNAME,LNAME columns from the table
EMPLOYEE where the EMPNO is greater than 150

EMPNO FNAME LNAME

161 Bob Joe

143 Steven Craig

155 John Smith

EMPNO FNAME LNAME

155 John Smith

161 Bob Joe

No particular order!

EMPNO FNAME LNAME

161 Bob Joe

SELECT EMPNO, FNAME, LNAME
FROM EMPLOYEE
WHERE EMPNO > 150 AND FNAME = 'Bob'

� Finding the Bobs' that have EMPNO greater than 150

IBM DB2 9.7 Academic Workshop 109 of 335

 13 © 2010 IBM Corporation

Information Management

Select Statement

Examples
SELECT MAX(SALARY) as MAX_SALARY, TITLE
FROM EMPLOYEE
GROUP BY TITLE

� Get the Highest salary for each title bracket

 EMPNO FNAME LNAME TITLE SALARY

151 Joe Brian MGR 100 000

123 Steve Jack ENTRY 35 000

166 Tom Jones SENIOR 75 000

190 Eric James MGR 120 000

202 Kevin Bob ENTRY 45 000

MAX_SALARY TITLE

120 000 MGR

45 000 ENTRY

75 000 SENIOR

Calculated from
the Aggregate
function MAX()

Renaming the
column to

MAX_SALARY

Non-Aggregate
columns must be
grouped together

 14 © 2010 IBM Corporation

Information Management

Select Statement

SELECT TITLE,AVG (SALARY) AS SALARY_AVG
FROM EMPLOYEE
GROUP BY TITLE
HAVING AVG (SALARY) > 50000

�Get all of the Titles that have an average salary
above 50000

SELECT TITLE,AVG (SALARY) AS SALARY_AVG
FROM EMPLOYEE
GROUP BY TITLE
HAVING AVG (SALARY) > 50000
ORDER BY TITLE

�The above query, ordered by Title

TITLE SALARY_AVG

SENIOR 75 000

MGR 110 000

TITLE SALARY_AVG

MGR 110 000

SENIOR 75 000

IBM DB2 9.7 Academic Workshop 110 of 335

 15 © 2010 IBM Corporation

Information Management

Inserting Data � Insert Statement

� The INSERT statement allows you to insert a single record or
multiple records into a table

�Syntax:

INSERT INTO <%TABLE REFERNCE%>
(<%EXPRESSION%>)
VALUES
(%VALUES%)

OR

INSERT INTO <%TABLE REFERNCE%>
(<%EXPRESSION%> **)
SELECT <%EXPRESSION%>
FROM <%TABLE REFERNCE%>
**Explicit mapping is not necessary

 16 © 2010 IBM Corporation

Information Management

Insert Statement

Examples

INSERT INTO EMPLOYEE (FNAME , LNAME)
VALUES ('Joe' , 'Bob')

�Inserts the name Joe Bob into the table Employee

TITLE FNAME LNAME

NULL Joe Bob

Value was not
provided, a NULL

(if column is
nullable) will place

hold

IBM DB2 9.7 Academic Workshop 111 of 335

 17 © 2010 IBM Corporation

Information Management

Insert Statement

INSERT INTO EMPLOYEE (FNAME,LNAME,TITLE)
SELECT FNAME,LNAME,CATEGORY
FROM OUTSOURCED
WHERE CATEGORY = 'TRANSFER'

�Selects the people from table Outsourced with the
category field as Transfer into the Employee Table

� Note: If both tables have the exact same fields
then an explicit mapping is not required.

FNAME LNAME CATEGORY

Billy Sue TRANSFER

Susan John NEW HIRE

OUTSOURCED

TITLE FNAME LNAME

NULL Joe Bob

TRANSFER Billy Sue

EMPLOYEE

 18 © 2010 IBM Corporation

Information Management

Data Modifications � Update Statement

� The UPDATE statement is used to update existing records in
a table

�Syntax:

UPDATE <%TABLE REFERENCE%>
SET <%EXPRESSION%> = %VALUE%

� UPDATE uses the same WHERE clause as the SELECT

IBM DB2 9.7 Academic Workshop 112 of 335

 19 © 2010 IBM Corporation

Information Management

Update Statement

Example

UPDATE EMPLOYEE
SET BONUS = SALARY/10

� Update every entry in the employee table and set the
bonus field to 10% of the salary field

SALARY BONUS

50 000 NULL

35 000 20 000

100 000 NULL

150 000 NULL

SALARY BONUS

50 000 5 000

35 000 3 500

100 000 10 000

150 000 15 000

 20 © 2010 IBM Corporation

Information Management

Update Statement

UPDATE EMPLOYEE
SET TITLE = 'Executive'
WHERE TITLE = 'Manager' and Tenure = 10

�Update title of Employees who has tenure of 10 and is
currently a manager in the Employee Table

FNAME LNAME TITLE TENURE

Stan Jones Manager 5

Bob Billy Executive 12

Joe Moe Senior 14

Susie Susan Manager 10

FNAME LNAME TITLE TENURE

Stan Jones Manager 5

Bob Billy Executive 12

Joe Moe Senior 14

Susie Susan Executive 10

IBM DB2 9.7 Academic Workshop 113 of 335

 21 © 2010 IBM Corporation

Information Management

Rules

� INSERT Rules

� INSERT rule is implicit when a foreign key is specified.

� A row can be inserted at any time into a parent table without any action being taken
in dependent table.

� A row cannot be inserted into dependent table unless there is a row in parent table
with a parent key value equal to foreign key value of row being inserted, unless
foreign key value is null.

� If an INSERT operation fails for one row during an attempt to insert more than one
row, all rows inserted by the statement are removed from the database.

� UPDATE Rules

� RESTRICT � Update for parent key will be rejected if a row in dependent table
matches original values of key.

� NO ACTION � Update operation for parent key will be rejected if any row in
dependent table does not have a corresponding parent key when update statement
is completed (default).

 22 © 2010 IBM Corporation

Information Management

Data Modifications � Delete Statement

� The DELETE statement is used to remove rows in a table

DELETE <%TABLE REFERENCE%>

� DELETE uses the same WHERE clause as a SELECT

� Delete removes data only not the table itself

IBM DB2 9.7 Academic Workshop 114 of 335

 23 © 2010 IBM Corporation

Information Management

Delete Statement

Example

DELETE EMPLOYEE

� All entries inside employee are deleted

DELETE EMPLOYEE
WHERE STATUS = 'Retired'

� Remove all the entries where the status is retired

EMPNO STATUS

1232 RETIRED

141 ACTIVE

51 RETIRED

EMPNO STATUS

EMPNO STATUS

1232 RETIRED

141 ACTIVE

51 RETIRED

EMPNO STATUS

141 ACTIVE

 24 © 2010 IBM Corporation

Information Management

DELETE Rules

� RESTRICT
� Prevents any row in parent table from being deleted if any dependent

rows are found.

� NO ACTION (default)

� Enforces the presence of a parent row for every child after all the
referential constraints are applied.

� The difference between NO ACTION and RESTRICT is based on when
constraint is enforced.

� CASCADE

� Implies that deleting a row in parent table automatically deletes any
related rows in dependent table.

� SET NULL

� Ensures that deletion of a row in parent table sets values of foreign key
in any dependent row to null (if nullable).

� Other parts of row are unchanged.

IBM DB2 9.7 Academic Workshop 115 of 335

 25 © 2010 IBM Corporation

Information Management

Joins

� Linking of one or more tables

SELECT *
FROM EMPLOYEE E
 INNER JOIN TEAM T ON E.TEAMID = T.ID

� Several Types of joins:
�Cartesian Product
�Inner Join
�Left Outer Join
�Right Outer Join
�Full Outer Join

 26 © 2010 IBM Corporation

Information Management

Cartesian Product
� Joins every entry to a corresponding entry regardless of

criteria

� Also called a Cross Join

� This is particularly useful if you need all possible
permutations

�For Example:

All possible employee partners
SELECT * FROM DETAIL D1, DETAIL D2
WHERE D1.EMPNO <> D2.EMPNO

� Need to be careful � 30,000 X 100,000 = 3,000,000,000 Rows!

EMPNO ROLE EXT TITLE X EMPNO ROLE EXT TITLE

IBM DB2 9.7 Academic Workshop 116 of 335

 27 © 2010 IBM Corporation

Information Management

Cross Join Example

EMPNO FNAME LNAME

001 Emily Stevens

002 John Doe

003 James Smith

EMPNO ROLE EXT TITLE

001 MGR 445 Mrs.

004 EXEC 101 Dr.

INFO (I) DETAIL (D)

CROSS
JOIN

EMPNO FNAME LNAME

001 Emily Stevens

002 John Doe

003 James Smith

001 Emily Stevens

002 John Doe

003 James Smith

EMPNO ROLE EXT TITLE

001 MGR 445 Mrs.

004 EXEC 101 Dr.

001 MGR 445 Mrs.

004 EXEC 101 Dr.

001 MGR 445 Mrs.

004 EXEC 101 Dr.

SELECT * FROM INFO I, DETAIL D

 28 © 2010 IBM Corporation

Information Management

Walk Through � Cartesian Product

SELECT *
FROM TABLE T1,TABLE T2
WHERE T1.ID = T2.ID

ID C2

A 11

B 22

T1

ID C4

A 33

Z 44

T2 T1.ID C2 T2.ID C4

A 11 A 33

B 22 Z 44

A 11 Z 44

B 22 A 33

T1.ID C2 T2.ID C4

A 11 A 33

B 22 Z 44

A 11 Z 44

B 22 A 33

T1.ID C2 T2.ID C4

A 11 A 33WHERE

IBM DB2 9.7 Academic Workshop 117 of 335

 29 © 2010 IBM Corporation

Information Management

INNER Join

� INNER join requires a match on both sides

� Both entries must satisfy the condition that was set in the
ON clause

� This is useful if you need to create views that have relevance
to each other

�For example:
Require Descriptions from a Look-up table linking with an ID

� Will return nothing if there is nothing in common

 30 © 2010 IBM Corporation

Information Management

Inner Join Example

EMPNO FNAME LNAME

001 Emily Stevens

002 John Doe

003 James Smith

EMPNO ROLE EXT TITLE

001 MGR 445 Mrs.

004 EXEC 101 Dr.

INFO (I) DETAIL (D)

INNER
JOIN

matching

EMPNO ROLE EXT TITLE

001 MGR 445 Mrs.

EMPNO FNAME LNAME

001 Emily Stevens

SELECT *
FROM INFO I
INNER JOIN DETAIL D ON I.EMPNO =
D.EMPNO

IBM DB2 9.7 Academic Workshop 118 of 335

 31 © 2010 IBM Corporation

Information Management

Walk Through � Inner Join

SELECT *
FROM TABLE T1 INNER JOIN T2
ON T1.ID = T2.ID

ID C2

A 11

B 22

T1

ID C4

A 33

Z 44

T2

T1.ID C2 T2.ID C4

A 11 A 33

 32 © 2010 IBM Corporation

Information Management

Right Outer Join

� Right Outer Join joins tables on the condition that it matches
the fields that are specified in the ON clause

�Right Outer � Condition must be met for the Right Side

� If condition not met
� take entry from the designated side and fill NULL in for the

non-designated side

IBM DB2 9.7 Academic Workshop 119 of 335

 33 © 2010 IBM Corporation

Information Management

Right Outer Join Example

EMPNO FNAME LNAME

001 Emily Stevens

002 John Doe

003 James Smith

EMPNO ROLE EXT TITLE

001 MGR 445 Mrs.

004 EXEC 101 Dr.

INFO (I) DETAIL (D)

RIGHT
OUTER

JOIN

matching

EMPNO ROLE EXT TITLE

001 MGR 445 Mrs.

004 EXEC 101 Dr.

EMPNO FNAME LNAME

001 Emily Stevens

NULL NULL NULL

SELECT *
FROM INFO I
RIGHT OUTER JOIN DETAIL D ON I.EMPNO =
D.EMPNO

 34 © 2010 IBM Corporation

Information Management

Walk Through � Right Outer Join

SELECT *
FROM TABLE T1 RIGHT OUTER JOIN TABLE T2
ON T1.ID = T2.ID
WHERE T1.ID IS NOT NULL

ID C2

A 11

B 22

T1

ID C4

A 33

Z 44

T2

T1.ID C2 T2.ID C4

A 11 A 33

T1.ID C2 T2.ID C4

A 11 A 33

NULL NULL Z 44WHERE

T1.ID C2 T2.ID C4

A 11 A 33

NULL NULL Z 44

IBM DB2 9.7 Academic Workshop 120 of 335

 35 © 2010 IBM Corporation

Information Management

Left Outer Join

� Left Outer Join joins tables on the condition that it matches
the fields that are specified in the ON clause

�Left Outer � Condition must be met for the Left Side

� If condition not met
� take entry from the designated side and fill NULL in for the

non-designated side

 36 © 2010 IBM Corporation

Information Management

Left Outer Join Example

EMPNO ROLE EXT TITLE

001 MGR 445 Mrs.

004 EXEC 101 Dr.

INFO (I) DETAIL (D)

LEFT
OUTER

JOIN

matching

EMPNO FNAME LNAME

001 Emily Stevens

002 John Doe

003 James Smith

EMPNO FNAME LNAME

001 Emily Stevens

002 John Doe

003 James Smith

EMPNO ROLE EXT TITLE

001 MGR 445 Mrs.

NULL NULL NULL NULL

NULL NULL NULL NULL

SELECT *
FROM INFO I
LEFT OUTER JOIN DETAIL D ON I.EMPNO =
D.EMPNO

IBM DB2 9.7 Academic Workshop 121 of 335

 37 © 2010 IBM Corporation

Information Management

Walk Through � Left Outer Join

SELECT *
FROM TABLE T1 LEFT OUTER JOIN TABLE T2
ON T1.ID = T2.ID
WHERE T2.ID IS NOT NULL

ID C2

A 11

B 22

T1

ID C4

A 33

Z 44

T2

T1.ID C2 T2.ID C4

A 11 A 33

B 22 NULL NULL

T1.ID C2 T2.ID C4

A 11 A 33

T1.ID C2 T2.ID C4

A 11 A 33

B 22 NULL NULLWHERE

 38 © 2010 IBM Corporation

Information Management

Full Outer Join

� Will match records on columns where there is a match

� If condition is not met
�The side that the condition is not met will fill with NULLs
�The side that the condition is met will be replicated
�Repeats for both sides

� This is useful for when you require information from both
tables that have relevance with each other

�For example:
Find the cars that are blue, cars that are white or neither

IBM DB2 9.7 Academic Workshop 122 of 335

 39 © 2010 IBM Corporation

Information Management

Full Outer Join Example

EMPNO FNAME LNAME

001 Emily Stevens

002 John Doe

003 James Smith

EMPNO ROLE EXT TITLE

001 MGR 445 Mrs.

004 EXEC 101 Dr.

INFO (I) DETAIL (D)

FULL
OUTER

JOIN

matching

EMPNO ROLE EXT TITLE

001 MGR 445 Mrs.

NULL NULL NULL NULL

NULL NULL NULL NULL

004 EXEC 101 Dr.

EMPNO FNAME LNAME

001 Emily Stevens

002 John Doe

003 James Smith

NULL NULL NULL

SELECT *
FROM INFO I
FULL OUTER JOIN DETAIL D ON I.EMPNO =
D.EMPNO

 40 © 2010 IBM Corporation

Information Management

Walk Through � Full Outer Join

SELECT *
FROM TABLE T1 FULL OUTER JOIN TABLE T2
ON T1.ID = T2.ID
WHERE T2.ID IS NOT NULL AND T1.ID IS NOT NULL

ID C2

A 11

B 22

T1

ID C4

A 33

Z 44

T2

T1.ID C2 T2.ID C4

A 11 A 33

B 22 NULL NULL

NULL NULL Z 44

T1.ID C2 T2.ID C4

A 11 A 33WHERE

T1.ID C2 T2.ID C4

A 11 A 33

B 22 NULL NULL

NULL NULL Z 44

IBM DB2 9.7 Academic Workshop 123 of 335

 41 © 2010 IBM Corporation

Information Management

Challenge Question

SELECT E.EMPNO, A.RANK, T.DESCRIPTION
FROM EMPLOYEE E
LEFT OUTER JOIN ATTRIBUTE A ON E.AID = A.ID
FULL OUTER JOIN TYPE T ON E.TID = T.ID
WHERE A.RANK = 'Major'

EMPNO AID TID

9021 1 3

4533 3 3

1345 1 1

9038 4 1

Employee ID RANK

1 Private

2 Sergeant

3 Captain

4 Major

5 General

ID DESCRIPTION

1 Army

2 Marine

3 Air Force

Attribute

Type

EMPNO RANK DESCRIPTION

9038 Major ArmyRESULT:

 42 © 2010 IBM Corporation

Information Management

Challenge Question

SELECT RANK
FROM EMPLOYEE
INNER JOIN ATTRIBUTE
ON EMPLOYEE.AID = ATTRIBUTE.ID
GROUP BY RANK
HAVING COUNT (EMPNO) > 1

EMPNO AID TID

9021 1 3

4533 3 3

1345 1 1

9038 4 1

Employee
ID RANK

1 Private

2 Sergeant

3 Captain

4 Major

5 General

Attribute

RANK

Private
RESULT:

IBM DB2 9.7 Academic Workshop 124 of 335

 43 © 2010 IBM Corporation

Information Management

Challenge � Prove they are equivalent

How are they equivalent?

SELECT *
FROM TABLE T1 INNER JOIN T2
ON T1.ID = T2.ID

� IS EQUIVALENT TO

SELECT *
FROM TABLE T1,TABLE T2
WHERE T1.ID = T2.ID

� IS EQUIVALENT TO

SELECT *
FROM TABLE T1 RIGHT OUTER JOIN TABLE T2
ON T1.ID = T2.ID
WHERE T1.ID IS NOT NULL

 44 © 2010 IBM Corporation

Information Management

Aliases

� Aliases : a reference to an object

SELECT E.FNAME AS 'First Name'
FROM EMPLOYEE E

� E is now referenced to the table Employee

� AS 'First Name' lets the column be returned as First Name
rather than FNAME

� Important when distinguishing objects from different
sources that may have conflicting names

IBM DB2 9.7 Academic Workshop 125 of 335

 45 © 2010 IBM Corporation

Information Management

Data Control Language (DCL)

� Data Control Language SQL statements control the security
and permissions of the objects or parts of the database(s)

� GRANT - gives user's access privileges to database

� REVOKE - withdraw access privileges given with the GRANT
command

GRANT SELECT ON <table name>...

REVOKE ALL ON <table name>...

 46 © 2010 IBM Corporation

Information Management

Transaction Control Statements (TCL)

� Transaction Control statements are used to manage the
changes made by DML statements. It allows statements to be
grouped together into logical transactions.

� COMMIT - save work done

� SAVEPOINT - identify a point in a transaction to which you can
later roll back

� ROLLBACK - restore database to original since the last COMMIT

� SET TRANSACTION - Change transaction options like isolation
level and what rollback segment to use

IBM DB2 9.7 Academic Workshop 126 of 335

© 2010 IBM Corporation

Information Management

Information Management Ecosystem Partnerships
IBM Canada Lab

Summer/Fall 2010Questions?

E-mail: imschool@us.ibm.com
Subject: �DB2 Academic Workshop�

IBM DB2 9.7 Academic Workshop 127 of 335

IBM DB2® 9.7

Understanding SQL
Hands-On Lab

I

Information Management Ecosystem Partnerships

IBM Canada Lab

IBM DB2 9.7 Academic Workshop 128 of 335

2

Contents

1. INTRODUCTION TO SQL 3

2. OBJECTIVES OF THIS LAB 3

3. SETUP AND START DB2 4

3.1 Environment Setup Requirements 4
3.2 Login to the Virtual Machine 4
3.3 SAMPLE Database 5
3.4 Launching Data Studio 6

4. EXPLORING A DATABASE WITH IBM DATA STUDIO 7

4.1 Filtering by Schema 8
4.2 Viewing Data Object Properties 11

5. DATA MANIPULATION LANGUAGE 12

5.1 Querying Data 13
5.1.1 Retrieving All Rows from a Table 13
5.1.2 Retrieving Rows using SELECT Statement 15
5.1.3 Sorting the Results 18
5.1.4 Aggregating Information 19
5.1.5 Retrieving Data from Multiple Tables (Joins) 20

5.2 Insert, Update and Delete 24
5.2.1 INSERT 24
5.2.2 UPDATE 26
5.2.3 DELETE 27

6. ANSWERS 28

IBM DB2 9.7 Academic Workshop 129 of 335

3

1. Introduction to SQL

Structured Query Language (SQL) is a standardized language used to work with
database objects and the data they contain. Using SQL, you can define, alter,
and delete database objects, as well as insert, update, delete, and retrieve data
values stored in database tables.

SQL has a defined syntax and a set of language elements. Most SQL statements
can be categorized according to the functions they perform; SQL statements fall
under one of the following categories:

• Data Definition Language (DDL)
 ● Defines properties of data objects
 CREATE, ALTER, DROP
• Data Manipulation Language (DML)
 ● Used to retrieve, add, edit and delete data
 SELECT, INSERT, UPDATE, DELETE
• Data Control Language (DCL)
 ● Used to control access to databases and data objects
 GRANT, REVOKE
• Transaction Control Language (TCL)
 ● Groups DML statements into transactions that can collectively be
applied to a database or undone in the event of a failure
 COMMIT, ROLLBACK, SAVEPOINT

2. Objectives of This Lab

By the end of this lab, you will be able to use IBM Data Studio environment to
write and execute DML SQL statements (SELECT, INSERT, UPDATE and
DELETE).

IBM DB2 9.7 Academic Workshop 130 of 335

4

3. Setup and Start DB2

3.1 Environment Setup Requirements
To complete this lab you will need the following:

• DB2 Academic Workshop VMware® image

• VMware Player 2.x or VMware Workstation 5.x or later
For help on how to obtain these components please follow the instructions
specified in the VMware Basics and Introduction module.

3.2 Login to the Virtual Machine

1. Start the VMware image by clicking the button in VMware.

2. At the login prompt, login with the following credentials:

• Username: db2inst1
• Password: password

3. Open a terminal window as follows by right-clicking on the Desktop and
choosing the Open Terminal item.

IBM DB2 9.7 Academic Workshop 131 of 335

5

4. Start the Database Manager by entering the following command:
db2inst1@db2rules:~> db2start

3.3 SAMPLE Database
Throughout this lab, we will use IBM Data Studio to execute the exercises.

For executing this lab, you will need the DB2’s sample database created in its
original format.

Execute the commands below to drop (if it already exists) and recreate the
SAMPLE database:
db2 force applications all

db2 drop db sample

db2 drop db mysample

db2sampl

IBM DB2 9.7 Academic Workshop 132 of 335

6

3.4 Launching Data Studio
1. Click on the Computer button in the bottom left corner of the screen, and select

Data Studio 2.2.

2. In the Select a workspace dialog, accept the default path. Click OK.

3. Data Studio will now start with the Welcome homepage.

4. Minimize this window by clicking the minimize button () located at the top right to

bring you into the Data perspective as shown below.

IBM DB2 9.7 Academic Workshop 133 of 335

7

4. Exploring a Database with IBM Data Studio

Before you can do anything productive with IBM Data Studio, a connection must
be established to a database. The Data Source Explorer view in Data Studio
allows you to do this. From this view it is possible to interact with and manipulate
database artifacts. Now let's connect to SAMPLE database.

Note: In the Data Source Explorer make sure the Show the Data Source
Explorer Contents in flat view icon is selected (this icon should change to

this:), otherwise you may have problem directing to the right tables.

1. In the Data Source Explorer, right-click on the SAMPLE [DB2 Alias] node,
and select Connect.

2. If the Database Authorization window appears, enter the following
credentials:

• Username: db2inst1
• Password: password

IBM DB2 9.7 Academic Workshop 134 of 335

8

3. Click OK. Notice that the SAMPLE [DB2 Alias] connection icon now has a
little yellow chain, signifying that the connection has been established.

4.1 Filtering by Schema

1. In the Data Source Explorer, expand the following nodes by clicking the
icons beside them: SAMPLE [DB2 for Linux...] > SAMPLE > Schemas.

IBM DB2 9.7 Academic Workshop 135 of 335

9

Notice that once you click on Schemas there are many different schemas listed
in the main view under SAMPLE > Schemas tab: DB2INST1, NULLID, SQLJ, etc.
Because we will only be working with the DB2INST1 schema, let’s filter our list to
show only this schema.

IBM DB2 9.7 Academic Workshop 136 of 335

10

2. In the Data Source Explorer, right-click on the Schemas node and select
Filter. The Filter dialog will appear, allowing you to filter either by typing in the
name of a schema (or a portion thereof), or by selecting from a list of schemas.
For this lab, we will filter by selection.

• Uncheck the Disable filter checkbox.
• Select the Selection radio button.
• Select Include selected items in the drop down list.
• Check the DB2INST1 checkbox.
• Click OK.

Repeat step 1 and notice that the previous Schemas node now reads Schemas
[Filtered]. Note as well that DB2INST1 is the only schema that appears in the
list.

IBM DB2 9.7 Academic Workshop 137 of 335

11

4.2 Viewing Data Object Properties
Data Source Explorer allows users to view most properties of nearly every
single data object available such as tables, views, packages, sequences, and so
on. Let’s spend a moment viewing the properties of some table to see how the
Properties view works.

1. In the Data Source Explorer, go to: SAMPLE > Schemas [Filtered] >
DB2INST1 > Tables.

2. Select one of the listed tables, say, EMPLOYEE by clicking on it.

3. Select the Properties tab to the right of the Data Source Explorer.

IBM DB2 9.7 Academic Workshop 138 of 335

12

4. Click the Columns tab to view a list of the columns in the EMPLOYEE table.

5. Data Manipulation Language

We will now look into the DML statements, using the SAMPLE database created
in Section 3.3. In this section, we are going to explore some commonly used

IBM DB2 9.7 Academic Workshop 139 of 335

13

DML statements by walking through examples, and then follow it up with some
exercises to test your understanding.

Before we move on to executing the SQL statements, make sure you are
connected to the SAMPLE database.

5.1 Querying Data
Because no database is worth much unless data can be obtained from it, it’s
important to understand how to use a SELECT SQL statement to retrieve data
from your tables.

5.1.1 Retrieving All Rows from a Table
Before using SQL, we’ll quickly show you how to retrieve rows from a table just
using the Data Studio options, without the need to write SQL code.

1. In the Data Source Explorer view, direct to the table you want to return all the
rows. For example, SAMPLE [DB2 for Linux...] > SAMPLE > Schemas
[Filtered] > DB2INST1 > Tables > EMPLOYEE.

2. Right Click on the table EMPLOYEE, choose Data, and then click on Return
All Rows.

IBM DB2 9.7 Academic Workshop 140 of 335

14

3. As we can see under the SQL Results tab, the operation was successful. All
rows from table EMPLOYEE are displayed under the Result1 tab to the right.

You can always expand or restore views by clicking on the corresponding icons
in top right corner of each view.

IBM DB2 9.7 Academic Workshop 141 of 335

15

5.1.2 Retrieving Rows using SELECT Statement
Although the method showed in the previous section is handy when you need to
quickly inspect the data from a table, in the real world you will be using SQL to
retrieve data from a database. Follow the steps below to learn how to execute a
SELECT statement in Data Studio.

1. In the Data Source Explorer toolbar, click the icon New SQL Script.

2. In the Select Connection Profile window that appears, select SAMPLE and
click Finish.

IBM DB2 9.7 Academic Workshop 142 of 335

16

3. A new tab will appear in the main view. Now let's write a SQL query using a
WHERE clause, say, we are curious about the BONUS money the managers in
department D11 will get. Type in the query below in the newly-created tab:

SELECT EMPNO, FIRSTNME, LASTNAME, WORKDEPT, JOB, BONUS

FROM EMPLOYEE e

WHERE e. WORKDEPT = 'D11'

IBM DB2 9.7 Academic Workshop 143 of 335

17

4. From the main menu, select Run > Run SQL

5. Notice that the SQL Results view is brought to the foreground at the bottom of
the screen. Click the icon to maximize the view. The SQL Results view should
indicate that the SQL Script was successful. In the Status tab to the right, a
summary of the statements in the script file are listed.

6. To view the results of our SQL query statements, click the Result1 tab on the
right.

7. Restore the SQL Results view to its original state, and close the Script.sql tab in the
main view by clicking its X icon.

8. Now let's do some exercises. Create the SQL statements for the queries
described below. You can then compare your answers with the suggested
solutions in Section 6.

1. Find out all sales information from salesman called “LEE” in the
“Ontario-South” region from the table SALES.

IBM DB2 9.7 Academic Workshop 144 of 335

18

2. Find out the name of all the departments that have a manager
assigned to it from table DEPARTMENT.

Tip: departments without a manager have NULL in the column
MGRNO.

5.1.3 Sorting the Results
The ORDER BY statement sorts the result set by one or more columns. By
default, the records returned by executing a SQL statement are sorted in
ascending order, but we can change it to a descending order with the DESC
keyword.

SELECT column_name(s)
FROM table_name
ORDER BY column_name(s) ASC|DESC

Let's now run an example on our SAMPLE database. In the table STAFF, rank
all the people from department 66 by their salary, in descending order.

Tip: You can invoke the code assist function by pressing Ctrl + Space. This way
instead of typing in the whole words, you can choose from a pre-defined list of
keywords.

Now run the query below:
SELECT *

IBM DB2 9.7 Academic Workshop 145 of 335

19

FROM STAFF

WHERE DEPT = '66'

ORDER BY SALARY DESC

As you can see from the returned table above, manager “Lea” has the highest
salary in department 66.

More exercises: (Suggested solutions in Section 6)

1. Using the same table STAFF as illustrated above, rank all the
people by their years of experience in descending order. For people
with same YEARS, rank again by their salary in ascending order.

5.1.4 Aggregating Information
The SQL GROUP BY statement is used in conjunction with the aggregate
functions (e.g. SUM, COUNT, MIN, or MAX, etc.) to group the result-set by one
or more columns.

SELECT column_name(s), aggregate_function(column_name)
FROM table_name
WHERE column_name operator value
GROUP BY column_name

Consider that you need to find out the average salary for each job position from
table STAFF. Run the query below:

SELECT JOB, AVG(SALARY) as AVG_SALARY

FROM STAFF

GROUP BY JOB

IBM DB2 9.7 Academic Workshop 146 of 335

20

As you can see in the returned table above, after column JOB, a newly-created
column called AVG_SALARY is displayed, containing the value that we were
looking for.

The logic behind the SQL is the following: The GROUP BY JOB clause instructs
DB2 to create groups of rows that have the same value for the JOB column, e.g.
Clerk, Manager, etc. Then average salary is calculated by using the function
AVG applied to the SALARY column for each of those group.

Exercise time again! (Suggested solutions can be found in Section 6)

1. Find the total amount of sales for each sales person in table
SALES.

2. Count the number of male employees for each job position.

5.1.5 Retrieving Data from Multiple Tables (Joins)
SQL joins can be used to query data from two or more tables, based on a
relationship between certain columns in these tables.

Tables in a database are often related to each other by the use of foreign keys
(FK), which reference a primary key (PK) in a second table. When we query data
using JOINS, most likely we are joining two or more tables based on these
relations between PKs and FKs.

Before we continue with examples, we will list the types of JOIN you can use,
and the differences between them.

• (INNER) JOIN: Returns all rows that have corresponding PKs and FKs.

• LEFT (OUTER) JOIN: Returns all rows that have corresponding PKs and
FKs plus the rows from left table that don’t have any matches in the right
table.

IBM DB2 9.7 Academic Workshop 147 of 335

21

• RIGHT (OUTER) JOIN: Returns all rows that have corresponding PKs and
FKs plus the rows from right table that don’t have any matches in the left
table.

• FULL (OUTER) JOIN: Returns all rows that have corresponding PKs and
FKs plus the rows from left table that don’t have any matches in the right
table, plus the rows from right table that don’t have any matches in the left
table.

Now, from tables EMP_PHOTO and EMPLOYEE, let's find out who uploaded a
employee photo in bitmap format. Try the query below:
SELECT e.EMPNO, p.PHOTO_FORMAT, e.FIRSTNME, e.LASTNAME

FROM EMPLOYEE e, EMP_PHOTO p

WHERE e.EMPNO = p.EMPNO AND p.PHOTO_FORMAT = 'bitmap'

Note: p.EMPNO in EMP_PHOTO is actually FK referring to e.EMPNO, the PK in
table EMPLOYEE.

The rationale behind the SQL above is as follows: First, the tables in the FROM
clause are combined together into a bigger one. The WHERE clause is then
responsible for filtering rows from this bigger table. Finally the columns in the
SELECT clause are returned for all matching rows. This is known as “implicit join
notation” for INNER JOIN. The equivalent query with "explicit join notation" is
shown below:
SELECT e.EMPNO, p.PHOTO_FORMAT, e.FIRSTNME, e.LASTNAME

FROM EMPLOYEE e INNER JOIN EMP_PHOTO p

 ON e.EMPNO = p.EMPNO

 AND p.PHOTO_FORMAT = 'bitmap'

Now let's run a similar query, but with LEFT OUTER JOIN instead of INNER
JOIN above. Run the following query:

IBM DB2 9.7 Academic Workshop 148 of 335

22

SELECT e.EMPNO, p.PHOTO_FORMAT, e.FIRSTNME, e.LASTNAME

FROM EMPLOYEE e LEFT OUTER JOIN EMP_PHOTO p

 ON e.EMPNO = p.EMPNO

 AND p.PHOTO_FORMAT = 'bitmap'

This time, the result is much longer. From what was explained before, an outer
join does not require each record in the two joined tables to have a matching
record. And the result of a left (outer) join for table EMPLOYEE and
EMP_PHOTO always contains all records of the "left" table (EMPLOYEE), even
if the join-condition does not find any matching record in the "right" table
(EMP_PHOTO), and this is where all the NULL values under column
PHOTO_FORMAT come from.

IBM DB2 9.7 Academic Workshop 149 of 335

23

Exercises time! (Suggested solutions in Section 6)

IBM DB2 9.7 Academic Workshop 150 of 335

24

1. Consider you are interested in the action information (with ACTNO
greater than 100) information and designer names of each project
action (from table PROJACT). List this information, sorting the
results alphabetically according to designers' names.

2. Join tables EMPLOYEE and DEPARTMENT, considering
WORKDEPT in EMPLOYEE is the FK referring to DEPTNO the PK
in table DEPARTMENT. Save the results, and repeat this query,
but use LEFT OUTER JOIN, RIGHT OUTER JOIN and FULL
OUTER JOIN instead. Compare the results.

5.2 Insert, Update and Delete
Consider now that we are required to enter new product information into our
database; or that Ms. Lee gets promoted so her JOB and SALARY need to be
altered accordingly; or Mr. Bryant was not active enough over a certain project
and got fired, should we still have him in our employee table?

For these situations, we can use the SQL statements INSERT, UPDATE and
DELETE to manipulate the table data.

5.2.1 INSERT
INSERT statement is used to add a new row to a table. For example, NBA player
Paul Pierce has retired from his career of basketball player, and successfully
locates himself in a position at your company. Now you should add his
information to the EMPLOYEE table.

Run the query below:

INSERT INTO EMPLOYEE(EMPNO, FIRSTNME, LASTNAME, EDLEVEL)

VALUES (300001, 'Paul', 'Pierce', 18)

IBM DB2 9.7 Academic Workshop 151 of 335

25

If we run SELECT * FROM EMPLOYEE, we can see that Paul Pierce is now
successfully part of the EMPLOYEE table, with unspecified columns filled with
the default value, which is NULL in this case.

The INSERT statement could also have sub-queries, for example, using a
SELECT clause, which would allows us to insert multiple records at once. Let’s
try it out. First, execute the DDL below:

CREATE TABLE MNG_PEOPLE LIKE EMPLOYEE

It creates a new table called MNG_PEOPLE which inherits all the
properties/column definitions from table EMPLOYEE.

Then we SELECT all the managers from table EMPLOYEE and insert them into
the newly-created table MNG_PEOPLE.

INSERT INTO MNG_PEOPLE SELECT * FROM EMPLOYEE WHERE JOB = 'MANAGER'

To check if the operation was successful, retrieve all rows from table
MNG_PEOPLE. You should see that 7 records were successfully inserted into
the new table.

IBM DB2 9.7 Academic Workshop 152 of 335

26

Now try to execute the exercises below (Suggested solutions can be found in
Section 6):

1. Our company just started a new department called FOO with
department number K47, and 'E01' as ADMRDEPT. Please insert
this record into table DEPARTMENT.

2. Create a new table called D11_PROJ with the same structure of
table PROJECT and add to it data about all projects from
department D11.

5.2.2 UPDATE
UPDATE statement is used to update existing records in a table. Its syntax looks
like:

UPDATE table_name
SET column1=value, column2=value2,...,column = valueN
WHERE some_column=some_value

Note: The WHERE clause here indicates specifically which record(s) will be
updated. Without WHERE, all records in this table will be modified!

The Human Resources lady just handed you a detailed information list about
Paul Pierce, and asked you to update all the following columns in table
EMPLOYEE with his data:

HIREDATE: 2010-01-01
JOB: DESIGNER
SEX: M
BIRTHDATE: 1977-10-13

We update his personal information by running the query below:
UPDATE EMPLOYEE

IBM DB2 9.7 Academic Workshop 153 of 335

27

SET HIREDATE = '2010-01-01', JOB = 'DESIGNER', SEX = 'M', BIRTHDATE =
'1977-10-13'

WHERE EMPNO = 300001

As you can see in the status tab, one row has been updated.

Again, if we run SELECT * FROM EMPLOYEE, we can see that Paul's data has
been updated in those four columns.

Now, let's see what else we can do with Paul's information.
(Suggested solutions in Section 6):

1. Try to update Paul's EDLEVEL to 'NULL', see what happens.
2. Try to update Paul's WORKDEPT to 'Z11', see what happens.

5.2.3 DELETE
DELETE statement deletes rows in a table. Its syntax looks like:

DELETE FROM table_name
WHERE some_column=some_value

IMPORTANT: Just like the UPDATE statement, if you omit the WHERE clause,
all records will be deleted.

Now, let's delete Paul Pierce's record from our database, since he changed his
mind and headed back to the basketball court. Run the following query:

DELETE FROM EMPLOYEE
WHERE EMPNO = 300001

IBM DB2 9.7 Academic Workshop 154 of 335

28

Check the contents of table EMPLOYEE (by now, you should know at least two
ways to do so). If you successfully executed the DELETE statement, Paul’s
record should not be in the result list.

More exercises (Suggested solutions in Section 6. Answers):

1. Try to delete department 'E21' from table DEPARTMENT

6. Answers

Section 5.1.2

Query 1
SELECT *

FROM SALES

WHERE SALES_PERSON = 'LEE'

AND REGION = 'Ontario-South'

Query 2
SELECT DEPTNAME

FROM DEPARTMENT

WHERE MGRNO is not NULL

IBM DB2 9.7 Academic Workshop 155 of 335

29

Section 5.1.3

Query 1
SELECT *

FROM STAFF

WHERE YEARS is not NULL

ORDER BY YEARS DESC, SALARY ASC

IBM DB2 9.7 Academic Workshop 156 of 335

30

Section 5.1.4

IBM DB2 9.7 Academic Workshop 157 of 335

31

Query 1
SELECT SALES_PERSON, SUM(SALES) AS total_sales

FROM SALES

GROUP BY SALES_PERSON

Query 2
SELECT JOB, COUNT(*) as TOTAL_NUM

FROM EMPLOYEE

WHERE SEX = 'M'

GROUP BY JOB

Section 5.1.5

Query 1
SELECT DISTINCT p.PROJNO, FIRSTNME, LASTNAME, p.ACSTDATE, ep.EMSTDATE

FROM EMPLOYEE e, EMPPROJACT ep, PROJACT p

WHERE e.EMPNO = ep.EMPNO

IBM DB2 9.7 Academic Workshop 158 of 335

32

AND ep.PROJNO = p.PROJNO

AND e.JOB = ‘DESIGNER’

AND p.ACTNO > 100

ORDER BY FIRSTNME, LASTNAME

Query 2
SELECT *

FROM EMPLOYEE e

 INNER

 | LEFT (OUTER)

 | RIGHT (OUTER)

 | FULL (OUTER)

 JOIN DEPARTMENT d

 ON e.WORKDEPT = d.DEPTNO

Section 5.2.1
Query 1
INSERT INTO DEPARTMENT (DEPTNO, DEPTNAME, ADMRDEPT)

VALUES ('K47', 'FOO', 'E01')

IBM DB2 9.7 Academic Workshop 159 of 335

33

Query 2
CREATE TABLE D11_PROJ LIKE PROJECT

INSERT INTO D11_PROJ

 SELECT *

 FROM PROJECT

 WHERE DEPTNO = 'D11'

Section 5.2.2
Query 1
UPDATE EMPLOYEE

SET EDLEVEL = NULL

WHERE EMPNO = 300001

Under the SQL Result tab, it says running of this query fails, and the Status tab
to the right says it is because we were trying to assign a NULL value to a NOT
NULL column, which is illegal.

IBM DB2 9.7 Academic Workshop 160 of 335

34

Query 2
UPDATE EMPLOYEE

SET WORKDEPT = 'Z11'

WHERE EMPNO = 300001

This query failed too, because it tried to update a FOREIGN KEY(FK) column,
WORKDEPT in our case, with a value that did not exist in the
PRIMARY/PARENT KEY column, column DEPTNO in table DEPARTMENT, that
this FK was referring to. This is illegal too.

Section 5.2.3
Query 1
DELETE FROM DEPARTMENT

WHERE DEPTNO = 'E21'

The error message says we can not delete row(s) containing PRIMARY/PARENT
KEY column(s) that some other columns are currently referring to, which is,
again, illegal.

IBM DB2 9.7 Academic Workshop 161 of 335

© 2010 IBM Corporation

Information Management

Information Management Ecosystem Partnerships
IBM Canada Lab

Summer/Fall 2010

Data Concurrency

 2 © 2010 IBM Corporation

Information Management

Agenda

� Database Transactions

� Concurrency

� Concurrency Issues

� Concurrency Control
�Isolation Levels
�Locking
�Specifying Isolation Levels

IBM DB2 9.7 Academic Workshop 162 of 335

 3 © 2010 IBM Corporation

Information Management

Database Transactions

� Transaction
�sequence of one or more SQL operations, grouped together

as a single unit that occurs in one atomic action
�also known as a unit of work

� After a transaction to the database is made it can be made
permanent (committed) or backed out (rolled back)

�manual-commit: use COMMIT or ROLLBACK statements
�auto-commit: database manager performs a commit

operation after every SQL statement

� Initiation and termination of a transaction defines the point of
data consistency of data with the database

�committed data versus uncommitted data

 4 © 2010 IBM Corporation

Information Management

Database Transactions

� Committed Data
�data consistent with the database
�changes can always become committed data manually using

a COMMIT statement
�committed data can only be reversed/removed with new

SQL statements (within a new transaction)
�accessible to all users and applications

� Uncommitted Data
�data inconsistent with the database
�changes that occur during the transaction before a COMMIT

statement is executed
�changes can be reversed with ROLLBACK
�inaccessible to other users and applications unless

Uncommitted Read is used

IBM DB2 9.7 Academic Workshop 163 of 335

 5 © 2010 IBM Corporation

Information Management

Database Transactions

CONNECT TO DB employees

INSERT INTO employee VALUES (100, 'JOHN')

INSERT INTO employee VALUES (200, 'MANDY')

COMMIT

DELETE FROM employee WHERE name='MANDY'

UPDATE employee SET empID=101 where name='JOHN'

ROLLBACK

UPDATE employee SET name='JACK' where empID=100

COMMIT

ROLLBACK

empID name

100 JOHN

200 MANDY

empID name

100 JOHN

200 MANDY

empID name

100 JACK

200 MANDY

Connection to a
database defines

first initiation

No changes
applied due to

ROLLBACK

 6 © 2010 IBM Corporation

Information Management

Concurrency

� Concurrency
�Sharing of resources by multiple interactive users or

application programs at the same time

� Having multiple interactive users can lead to:
�Lost Update
�Uncommitted Read
�Non-repeatable Read
�Phantom Read

� Need to be able to control the degree of concurrency:
�With proper amount of data stability
�Without loss of performance

IBM DB2 9.7 Academic Workshop 164 of 335

 7 © 2010 IBM Corporation

Information Management

Concurrency Issues

� Lost Update
�Occurs when two transactions read and then attempt to

update the same data, the second update will overwrite the
first update before it is committed

1) Two applications, A and B, both read the same row and
calculate new values for one of the columns based on the
data that these applications read

2) A updates the row

3) Then B also updates the row

4) A's update lost

 8 © 2010 IBM Corporation

Information Management

Concurrency Issues

� Uncommitted Read
�Occurs when uncommitted data is read during a transaction
�Also known as a Dirty Read

1) Application A updates a value

2) Application B reads that value before it is committed

3) A backs out of that update3) A backs out of that update

4) Calculations performed by B are based on the
uncommitted data

IBM DB2 9.7 Academic Workshop 165 of 335

 9 © 2010 IBM Corporation

Information Management

Concurrency Issues

� Non-repeatable Read
�Occurs when a transaction reads the same row of data twice

and returns different data values with each read

1) Application A reads a row before processing other
requests

2) Application B modifies or deletes the row and commits
the change

3) A attempts to read the original row again

4) A sees the modified row or discovers that the original
row has been deleted

 10 © 2010 IBM Corporation

Information Management

Concurrency Issues

� Phantom Read
�Occurs when a search based on some criterion returns

additional rows after consecutive searches during a
transaction

1) Application A executes a query that reads a set of
rows based on some search criterion

2) Application B inserts new data that would satisfy
application A's query

3) Application A executes its query again, within the
same unit of work, and some additional phantom values
are returned

IBM DB2 9.7 Academic Workshop 166 of 335

 11 © 2010 IBM Corporation

Information Management

Concurrency Control

� Isolation Levels
�determine how data is locked or isolated from other

concurrently executing processes while the data is being
accessed

�are in effect while the transaction is in progress

� There are four levels of isolation in DB2:
�Repeatable read
�Read stability
�Cursor stability

� Currently Committed

�Uncommitted read

 12 © 2010 IBM Corporation

Information Management

Locking

� Isolation levels are enforced by locks
�locks limit or prevent data access by concurrent users or

application processes

� Locking Attributes
�resource being locked is called object
�objects which can be explicitly locked are databases, tables

and table spaces
�objects which can be implicitly locked are rows, index keys,

and tables
�implicit locks are acquired by DB2 according to isolation

level and processing situations
�object being locked represents granularity of lock
�length of time a lock is held is called duration and is affected

by isolation level

IBM DB2 9.7 Academic Workshop 167 of 335

 13 © 2010 IBM Corporation

Information Management

Types of Locks

� Share (S)
�concurrent transactions are limited to read-only operations

� Update (U)
�concurrent transactions are limited to read-only operations
�if the transactions have not declared that they might update

a row, the database manager assumes that transaction
currently looking at a row might update it

� Exclusive (X)
�concurrent transactions are prevented from accessing the

data in any way
�does not apply to transactions with an isolation level of UR

� Database manager places exclusive locks on every row that
is inserted, updated, or deleted

 14 © 2010 IBM Corporation

Information Management

Deadlock

� Deadlock
�Occurs when 2 (or more) competing operations are waiting

for each other to free some resource, but neither does, thus
the operations will never finish. Eg:

� Deadlock Detector
�discovers deadlock cycles

� randomly selects one of the transactions involved to roll
back and terminate

� transaction chosen is then sent an SQL error code, and
every lock it had acquired is released

� App1 modifies row 1 on Table A � it holds an X lock on it
� App2 modifies row 5 on Table B � It holds an X lock on it
� App2 tries to modify row 1 on Table A but it can't since App1 has the

lock. It goes into WAIT mode.
� App1 tries to modify row 5 on Table B but it can't since App2 has the

lock. It goes into WAIT mode.
� DEADLOCK as both operations can not complete

IBM DB2 9.7 Academic Workshop 168 of 335

 15 © 2010 IBM Corporation

Information Management

Repeatable Read

� Highest level of isolation
�No dirty reads, non-repeatable reads or phantom reads

� Locks the entire table or view being scanned for a query
�Provides minimum concurrency

� When to use Repeatable Read:
�Changes to the result set are unacceptable
�Data stability is more important than performance

 16 © 2010 IBM Corporation

Information Management

Read Stability

� Similar to Repeatable Read but not as strict
�No dirty reads or non-repeatable reads
�Phantom reads can occur

� Locks only the retrieved or modified rows in a table or view

� When to use Read Stability:
�Application needs to operate in a concurrent environment
�Qualifying rows must remain stable for the duration of the

unit of work
�Only issue unique queries during a unit of work

� If the same query is issued more than once during a unit of
work, the same result set should not be required

IBM DB2 9.7 Academic Workshop 169 of 335

 17 © 2010 IBM Corporation

Information Management

Cursor Stability

� Default isolation level
�No dirty reads
�Non-repeatable reads and phantom reads can occur

� Locks only the row currently referenced by the cursor

� When to use Cursor Stability:
�Want maximum concurrency while seeing only committed

data

 18 © 2010 IBM Corporation

Information Management

Currently Committed

� Currently Committed is a variation on Cursor Stability
�Avoids timeouts and deadlocks
�Log based:

� No management overhead

Situation Result

Reader blocks Reader No

Reader blocks Writer Maybe

Writer blocks Reader Yes

Writer blocks Writer Yes

Situation Result

Reader blocks Reader No

Reader blocks Writer No

Writer blocks Reader No

Writer blocks Writer Yes

Cursor
Stability

Currently
Committed

IBM DB2 9.7 Academic Workshop 170 of 335

 19 © 2010 IBM Corporation

Information Management

� Up to DB2 9.5
�Cursor Stability is the default isolation level

� Now in DB2 9.7
�Currently Committed is the default for NEW databases
�Currently Committed is disabled for upgraded databases,

i.e., Cursor Stability semantics are used

� Applications that depend on the old behavior (writers
blocking readers) will need to update their logic or disable
the Currently Committed semantics

Currently Committed

 20 © 2010 IBM Corporation

Information Management

Transaction A Transaction B

update T1 set col1 = ? where col2
= 2

update T2 set col1 = ? where col2 = ?

select * from T2 where col2 >= ?

select * from T1 where col5 = ? and
col2 = ?

DEADLOCK!!

Waiting because is
reading uncommitted data

Waiting because is
reading uncommitted data

Example � Cursor Stability Semantics

IBM DB2 9.7 Academic Workshop 171 of 335

 21 © 2010 IBM Corporation

Information Management

No deadlocks, no timeouts in this scenario!No deadlocks, no timeouts in this scenario!

Example � Currently Committed Semantics

Transaction A Transaction B

update T1 set col1 = ? where col2
= 2

update T2 set col1 = ? where col2 = ?

select * from T2 where col2 >= ?

select * from T1 where col5 = ? and
col2 = ?

commit

commit

No locking
Reads last committed version

of the data

No locking
Reads last committed version

of the data

 22 © 2010 IBM Corporation

Information Management

Currently Committed � How to use it?

�cur_commit � DB config parameter

�ON: default for new DBs created in DB2 9.7 � CC semantics

in place

�DISABLED: default value for existing DBs � old CS

semantics in place

�PRECOMPILE/BIND
�CONCURRENTACCESSRESOLUTION: Specifies the
concurrent access resolution to use for statements in the
package.

�USE CURRENTLY COMMITTED
�WAIT FOR OUTCOME

IBM DB2 9.7 Academic Workshop 172 of 335

 23 © 2010 IBM Corporation

Information Management

Uncommitted Read

� Lowest level of isolation
�Dirty reads, non-repeatable reads and phantom reads can

occur

� Locks only rows being modified in a transaction involving
DROP or ALTER TABLE

�Provides maximum concurrency

� When to use Uncommitted Read:
�Querying read-only tables
�Using only SELECT statements
�Retrieving uncommitted data is acceptable

� Uncommitted Read with Read-Write tables
�UR behaves like CS with updateable cursors

 24 © 2010 IBM Corporation

Information Management

Isolation Levels

� Summary

Application Type High data stability
required

High data stability not
required

Read-write transactions Read Stability (RS) Cursor Stability (CS)

Read-only transactions Repeatable Read (RR) or
Read Stability (RS)

Uncommited Read (UR)

Isolation Level Dirty Read Non-repeatable
Read

Phantom
Read

Repeatable Read (RR) - - -

Read Stability (RS) - - Possible

Cursor Stability (CS) - Possible Possible

Uncommitted read (UR) Possible Possible Possible

DEFAULT

IBM DB2 9.7 Academic Workshop 173 of 335

 25 © 2010 IBM Corporation

Information Management

Specifying Isolation Levels

� Precompile / Bind
�ISOLATION option of PREP or BIND command
�Can determine isolation level of a package by executing the

following query

� Statement Level
�Use the WITH {RR, RS, CS, UR} clause
�The WITH UR option applies only to read-only operations

� ensure that a result table is read-only by specifying FOR
READ ONLY in the SQL statement

�Overrides the isolation level specified for the package

 SELECT * FROM tb1 WITH RR

 SELECT ISOLATION FROM syscat.packages

 WHERE pkgname = 'pkgname'

 AND pkgschema = 'pkgschema'

 26 © 2010 IBM Corporation

Information Management

Specifying Isolation Levels

� Dynamic SQL within the current session
�SET CURRENT ISOLATION
�For all subsequent dynamic SQL statements within the same

session

� JDBC or SQLJ at run time
�SQLJ profile customizer (db2sqljcustomize command)

� CLI or ODBC at run time
�CHANGE ISOLATION LEVEL command specified during the

program preparation process

 CHANGE ISOLATION LEVEL TO RR

IBM DB2 9.7 Academic Workshop 174 of 335

© 2010 IBM Corporation

Information Management

Information Management Ecosystem Partnerships
IBM Canada Lab

Summer/Fall 2010Questions?

E-mail: imschool@us.ibm.com
Subject: �DB2 Academic Workshop�

IBM DB2 9.7 Academic Workshop 175 of 335

IBM DB2® 9.7

Data Concurrency
Hands-On Lab

I

Information Management Ecosystem Partnerships

IBM Canada Lab

IBM DB2 9.7 Academic Workshop 176 of 335

2

Contents

1. INTRODUCTION TO DATA CONCURRENCY ... 4
1.1 CURSOR STABILITY.. 4
1.2 CURRENTLY COMMITTED ... 5

1.2.1 Cursor Stability x Currently Committed.. 6
1.2.2 Repeatable Read... 6
1.2.3 Read Stability... 7
1.2.4 Uncommitted Read .. 7

2. OBJECTIVES OF THIS LAB... 7
3. SETUP AND START DB2 ... 8

3.1 ENVIRONMENT SETUP REQUIREMENTS ... 8
3.2 LOGIN TO THE VIRTUAL MACHINE.. 8
3.3 SAMPLE DATABASE... 9
3.4 CREATE AND POPULATE THE TABLE... 9

4. CURSOR STABILITY WITH CURRENTLY COMMITTED............................ 9
4.1 THE “BEFORE” SCENARIO: WITHOUT CURRENTLY COMMITTED 10

4.1.1 Turning off Currently Committed.. 10
4.1.2 Execute a write query in Terminal A .. 11
4.1.3 Execute a read query in Terminal B .. 12
4.1.4 Releasing the lock ... 13

4.2 THE “AFTER” SCENARIO: WITH CURRENTLY COMMITTED 14
4.2.1 Turning on Currently Committed.. 15
4.2.2 Execute a write query in Terminal A .. 15
4.2.3 Execute a read query in Terminal B .. 15

5. REPEATABLE READ.. 17
5.1 THE “PHANTOM READ” SCENARIO: REPEATABLE READ............................... 18

5.1.1 Execute a read query in Terminal A .. 18
5.1.2 Execute a write query in Terminal B .. 18
5.1.3 Releasing the lock ... 19

6. READ STABILITY ... 21
6.1 THE “PHANTOM READ” SCENARIO: READ STABILITY 21

6.1.1 Execute a read query in Terminal A .. 21
6.1.2 Execute a write query in Terminal B .. 22
6.1.3 Execute another read query in Terminal A 23

7. UNCOMMITTED READ ... 24
7.1 THE “UNCOMMITTED READ” SCENARIO: CURSOR STABILITY........................ 25

7.1.1 Execute an update query in Terminal A... 25
7.1.2 Execute a read query in Terminal B .. 25

IBM DB2 9.7 Academic Workshop 177 of 335

3

7.1.3 Releasing the lock ... 26
7.2 THE “UNCOMMITTED READ” SCENARIO: UNCOMMITTED READ..................... 28

7.2.1 Execute an update query in Terminal A... 28
7.2.2 Execute a read query in Terminal B .. 28

IBM DB2 9.7 Academic Workshop 178 of 335

4

1. Introduction to Data Concurrency

This section provides a brief introduction about data concurrency and
concurrency control in DB2. It explains in detail the available isolation levels in
DB2, with a special focus on Currently Committed, which has been introduced in
DB2 9.7. If you are comfortable with these concepts and wish to start the lab
exercises right away, please proceed to Section 2.

In most database environments, many users must access and change the data
within the database at the same time. It is important that the database manager
allow these multiple users to make concurrent changes while ensuring that data
integrity is preserved.

Concurrency refers to the sharing of resources by multiple interactive users or
application programs at the same time. The database manager must control this
access in order to prevent undesirable effects, such as Lost Updates,
Uncommitted Read, Non-repeatable Read and Phantom Read.

The level of concurrency control in a database is determined by the isolation
level that is associated with an application process. This determines the degree
to which the data that is being accessed by that process, is locked or isolated
from other concurrently executing processes. The isolation level is in effect for
the duration of a unit of work.

With DB2 there are four levels of isolation available:

• Repeatable read
• Read stability
• Cursor stability (default)
• Uncommitted read

In DB2 9.7 an additional parameter called Currently Committed has been added
to the cursor stability (CS) isolation level. Therefore, one could say DB2 has a 5th
isolation level: “Cursor Stability with Currently Committed semantics”. In fact, this
is the new default for new databases created in DB2 9.7.

1.1 Cursor Stability

The cursor stability isolation level locks any row being accessed during a
transaction while the cursor is positioned on that row. This lock remains in effect
until the next row is fetched or the transaction terminates. However, if any data in
the row was changed, the lock is held until the change is committed.

IBM DB2 9.7 Academic Workshop 179 of 335

5

Under this isolation level, no other application can update or delete a row while
an updatable cursor is positioned on that row. Under CS, access to the
uncommitted data of other applications is not possible. However, non-repeatable
reads and phantom reads are possible.

CS is the default isolation level. It is suitable when you want maximum
concurrency and need to see only committed data.

1.2 Currently Committed

Lock timeouts and deadlocks can occur under the CS isolation level with row-
level locking, especially with applications that are not designed to prevent such
problems. Some high throughput database applications cannot tolerate waiting
on locks that are held during transaction processing, and some applications
cannot tolerate processing uncommitted data, but still require non-blocking
behavior for read transactions.

Under the new currently committed semantics, only committed data is returned,
as was the case previously, but now readers do not wait for writers to release
row locks. Instead, readers return data that is based on the currently committed
version; that is, data prior to the start of the write operation.

Currently committed semantics are turned on by default for new databases. This
allows any application to take advantage of the new behavior, and no changes to
the application itself are required. The new database configuration parameter
cur_commit can be used to override this behavior. This might be useful, for
example, in the case of applications that require blocking on writers to
synchronize internal logic.

Similarly, upgraded databases have cur_commit disabled by default in case
applications require blocking writers to synchronize their internal logic, and this
parameter can be turned on later, if so desired.

Currently committed semantics apply only to read-only scans that do not involve
catalog tables or the internal scans that are used to evaluate constraints. Note
that, because currently committed is decided at the scan level, a writer's access
plan might include currently committed scans. For example, the scan for a read-
only subquery can involve currently committed semantics. Because currently
committed semantics obey isolation level semantics, applications running under
currently committed semantics continue to respect isolation levels.

Currently committed semantics require increased log space. Additional space is
required for logging the first update of a data row during a transaction. This data
is required for retrieving the currently committed image of the row. Depending on

IBM DB2 9.7 Academic Workshop 180 of 335

6

the workload, this can have an insignificant or substantial impact on the total log
space used. The requirement for additional log space does not apply when
cur_commit is disabled.

1.2.1 Cursor Stability x Currently Committed
Consider the following scenario, in which deadlocks are avoided under the
currently committed semantics. In this scenario, two applications update two
separate tables, but do not yet commit. Each application then attempts to read
(with a read-only cursor) from the table that the other application has updated.

Time Transaction A Transaction B

1 update T1 set col1 = ? where
col2 = ?

2 update T2 set col1 = ? where col2
= ?

3 select col1, col5, from T1 where
col5 = ? and col2 = ?

waiting for A to commit

4 select col1, col3, col4 from
T2 where col2 >= ?

waiting for B to commit

Without currently committed semantics, these transactions running under the
cursor stability isolation level might create a deadlock, causing one of the
transactions to fail. This happens when each transactions needs to read data that
is being updated by the other transaction.
Under currently committed semantics, if the query (of either application) happens
to require the data currently being updated by the other transaction, that
transaction does not wait for the lock to be released, making a deadlock
impossible. The previously committed version of the data is located and used
instead.

1.2.2 Repeatable Read
Under Repeatable Read, lost updates, uncommitted read, non-repeatable reads,
and phantom reads are not possible. In this scenario we will simulate how a
phantom read would occur and observe how repeatable read isolates the
transactions in order to prevent concurrency problems.
Application A will execute a query that reads a set of rows based on some search
criterion. Application B will try to insert new data that would satisfy application A's
query.

IBM DB2 9.7 Academic Workshop 181 of 335

7

1.2.3 Read Stability
Read Stability is similar to Repeatable Read, however, since Read Stability only
locks the rows being accessed, phantom reads can occur. We will simulate a
scenario to show how read stability differs from repeatable read in terms of
isolation transactions.

Application A will execute a query that reads a set of rows based on some search
criterion. Application B will insert new data that would satisfy application A's
query.

1.2.4 Uncommitted Read
The uncommitted read isolation level can be useful when using read-only tables
or only select statements. When using uncommitted read we do not have to
worry about wait times because uncommitted read does not wait for a transaction
to commit. Instead, it will read the uncommitted changes of other transactions.
Updatable cursors operating under UR behave as though the isolation level were
CS. Under UR, access to uncommitted data, non-repeatable reads, and
phantom reads are possible.

Application A will execute a query that updates a row using RR. Application B will
attempt to read the same row using CS and UR.

2. Objectives of This Lab

After completion of this lab, the student should be able to:

• Understand the semantic differences between Cursor Stability and
Currently Committed.

• Be able to enable and disable the Currently Committed semantics for a
database.

• Understand the differences between Repeatable Read, Read Stability,
Cursor Stability and Uncommitted Read.

• Be able to specify different isolation levels for a database at run time using
CLP.

IBM DB2 9.7 Academic Workshop 182 of 335

8

3. Setup and Start DB2

3.1 Environment Setup Requirements
To complete this lab you will need the following:

• DB2 Academic Workshop VMware® image

• VMware Player 2.x or VMware Workstation 5.x or later
For help on how to obtain these components please follow the instructions
specified in the VMware Basics and Introduction module.

3.2 Login to the Virtual Machine
1. Login to the VMware virtual machine using the following information:

User: db2inst1
Password: password

2. Open a terminal window as by right-clicking on the Desktop area and

choose the “Open Terminal” item.

IBM DB2 9.7 Academic Workshop 183 of 335

9

3. Start up DB2 Server by typing “db2start” in the terminal window.

db2start

3.3 SAMPLE Database
For executing this lab, you will need the DB2’s sample database created in its
original format.

Execute the commands below to drop (if it already exists) and recreate the
SAMPLE database:
db2 force applications all

db2 drop db sample

db2sampl

3.4 Create and populate the table
We will create a simple table that will be updated during this lab session. The
table named “tb1” will be created with a single column named “column1”. We
will then populate it with 9 rows with the same value “10”.

1. Run the following commands.
db2 connect to SAMPLE

db2 “create table TB1 (COLUMN1 integer)”

db2 “insert into TB1 (select 10 from syscat.tables fetch first 9 rows
only)”

db2 terminate

4. Cursor Stability with Currently Committed

We will now demonstrate the effect of the currently committed feature. To do so,
we will simulate a scenario where a potential read / write block can happen when
2 queries are running concurrently. Then, we compare the difference in results
and execution time when we toggle the parameter cur_commit.

We will use DB2’s command line processor (CLP) to simulate the applications
accessing the database at the same time.

IBM DB2 9.7 Academic Workshop 184 of 335

10

4.1 The “Before” scenario: without Currently
Committed

4.1.1 Turning off Currently Committed
1. First, we will examine the existing setting for currently committed.

Using the terminal, type in the following command. Since we will be
using more than one terminal, we’ll refer to this terminal as Terminal A.

db2 get db cfg for sample

The cur_commit parameter is located near the end of the list. It should display as
ON for now, as this is the default for new databases in DB2 9.7.

2. The next step is to disable the Currently Committed semantics. For

that, change the value of cur_commit to DISABLED using the following
command:

db2 update db cfg for sample using cur_commit disabled

IBM DB2 9.7 Academic Workshop 185 of 335

11

4.1.2 Execute a write query in Terminal A
1. In order to mimic the behaviour of a long running transaction, we first need

to disable the auto-commit feature, which is ON by default in CLP. When
auto-commit is active, CLP automatically issues a COMMIT after every
executed SQL statement. Therefore, we need to disable it so we are able
to specify when the transaction will be committed. Enter the CLP prompt
by typing the command below. The “+c” option will disable the auto-
commit feature for this session.

db2 +c

2. You can check that the auto-commit feature is off by executing the
command below. Since auto-commit is OFF, from now on all SQL
statements that you execute will be part of the same transaction until you
issue a “commit” or “rollback”.

list command options

3. Connect to database “sample”.

connect to sample

IBM DB2 9.7 Academic Workshop 186 of 335

12

4. Before we make any updates to the table, we will do a quick query to

observe the current values for column “column1”.
select * from tb1

5. We will then execute an update query which will put a lock on the rows for

as long as the transaction is not committed. We will execute a simple
update query which will change all the values to 20.

update tb1 set column1 = 20

4.1.3 Execute a read query in Terminal B
1. We will open up another terminal window that will act as the second

application trying to access the table. Open a terminal window as by right-
clicking on the Desktop area and choose the “Open Terminal” item. This
new terminal will be designated as Terminal B.

IBM DB2 9.7 Academic Workshop 187 of 335

13

2. Similar to the first terminal, we will connect to the database “sample” as
user “db2inst1” with password “password” by typing in the command

db2 connect to sample

3. Next, we will launch a query that will read the data locked by Terminal A.
time db2 "select * from tb1"

The time command will allow us to quantify the wait time. We can see that
the query waits and does not return any result. In fact, it is being blocked
by Terminal A’s query.

4.1.4 Releasing the lock
1. With the 2 terminals open beside each other, we will observe the effect of

committing the query in Terminal A. In Terminal A, commit the transaction
by executing the following command

commit

IBM DB2 9.7 Academic Workshop 188 of 335

14

We can see that terminal B’s query instantly returned with the updated
values. The block by terminal A has been released and the transaction on
terminal B was allowed to continue and access the values.

4.2 The “After” scenario: With Currently Committed
We will repeat the procedure again but this time with the Currently Committed
feature turned on. The objective is to see the difference in the time it took for the
second query to return and the actual values being returned.

IBM DB2 9.7 Academic Workshop 189 of 335

15

4.2.1 Turning on Currently Committed
1. In Terminal A, we will use the command to turn on currently committed:

update db cfg for sample using cur_commit on

2. After changing the value, we need to disconnect the database connection

for the new value to take effect. In terminal A, execute:
connect reset

3. In terminal B, execute:
db2 connect reset

4.2.2 Execute a write query in Terminal A
1. Similar to the previous section, we will update the values in the table from

20 to 30.
connect to sample
update tb1 set column1 = 30

 You should see that the query has been executed successfully.

4.2.3 Execute a read query in Terminal B
1. In Terminal B, reconnect to the database and try to retrieve the values

from table tb1.
db2 connect to sample
time db2 "select * from tb1"

IBM DB2 9.7 Academic Workshop 190 of 335

16

Notice the amount of time the query took to return this time. The query returned
instantly because there was no access block to the data. Also, notice the values
returned were not from the most recent update since we have not committed it
yet.

2. In Terminal A, commit the update by typing in the command
commit

3. Switch the focus back to Terminal B. We want to execute the selection
query again by pressing the up arrow button once to retrieve the last
executed command, and then press Enter. If you cannot find the last
command, type in

time db2 "select * from tb1"

Notice the values returned this time reflects our last update since the
transaction in terminal A has ended and the updates committed to the
database.

IBM DB2 9.7 Academic Workshop 191 of 335

17

4. Terminate the database connection in terminal A:
connect reset

5. Then, terminate the database connection in terminal B:
db2 connect reset

5. Repeatable Read

Now that we have demonstrated the effect of cursor stability and the currently
committed feature, we will take a look at repeatable read. To do so, we will
simulate a scenario to show how repeatable read isolates each transaction to
prevent phantom read concurrency issues.

Application A will execute a query that reads a set of rows based on some search
criterion. Application B will try to insert new data that would satisfy application A's
query.

We will use DB2’s command line processor (CLP) to simulate the applications
accessing the database at the same time.

IBM DB2 9.7 Academic Workshop 192 of 335

18

5.1 The “Phantom Read” scenario: Repeatable Read

5.1.1 Execute a read query in Terminal A
1. We need to change the isolation of the current CLP session of

Terminal A to repeatable read. This must be done before connecting
to a database.

change isolation to RR

2. Connect to database “sample”.

connect to sample

3. Now we can perform a quick query to observe the current values for
column “column1” based on some criteria.

select * from tb1 where column1 = 30

5.1.2 Execute a write query in Terminal B
1. We will launch a query that will attempt to insert data into tb1 which is

locked by Terminal A.
db2 connect to sample
db2 "insert into tb1 values (30)"

IBM DB2 9.7 Academic Workshop 193 of 335

19

We can see that the operation waits and does not return any result. In fact,
it is being blocked by Terminal A’s query.

5.1.3 Releasing the lock
1. With the 2 terminals open beside each other, we will observe the effect of

committing the query in Terminal A. In Terminal A, commit the transaction
by executing the following command

commit

IBM DB2 9.7 Academic Workshop 194 of 335

20

We can see that terminal B’s query instantly completed. The block by
Terminal A has been released and the transaction on Terminal B was
allowed to insert the new values.

Here we can see that with the Repeatable Read isolation level, phantom
read scenarios do not occur because the rows read by the application are
locked and cannot be updated by other transactions.

What if we perform the same scenario with the read stability isolation level
instead?

2. Terminate the database connection in terminal A:
connect reset

3. Then, terminate the database connection in terminal B:
db2 connect reset

IBM DB2 9.7 Academic Workshop 195 of 335

21

6. Read Stability

We have previously determined that phantom reads cannot occur with the
repeatable read isolation level. They are possible, however, when using the read
stability isolation level. We will simulate a scenario to show how read stability
differs from repeatable read in terms of isolating transactions.

Application A will execute a query that reads a set of rows based on some search
criterion. Application B will insert new data that would satisfy application A's
query.

We will use DB2’s command line processor (CLP) to simulate the applications
accessing the database at the same time.

6.1 The “Phantom Read” scenario: Read Stability

6.1.1 Execute a read query in Terminal A
1. We need to change the isolation of the current CLP session of

Terminal A to read stability. This must be done before connecting to a
database.

change isolation to RS

2. Connect to database “sample”.

connect to sample

3. Now we can perform a quick query to observe the current values for
column “column1” using some criteria.

select * from tb1 where column1 = 30

IBM DB2 9.7 Academic Workshop 196 of 335

22

The number of record(s) selected is currently 10.

6.1.2 Execute a write query in Terminal B
1. Terminal B will insert data matching the criteria of the query by Terminal A.

db2 connect to sample
db2 "insert into tb1 values (30)"

We can see that the query does not wait for Terminal A to commit and
inserts data into tb1.

IBM DB2 9.7 Academic Workshop 197 of 335

23

6.1.3 Execute another read query in Terminal A
1. Now we can perform another quick query to observe the current values for

column “column1” before committing.
select * from tb1 where column1 = 30

IBM DB2 9.7 Academic Workshop 198 of 335

24

Notice the query now returns 11 rows of data instead of 10. One additional row
has appeared even though we executed the same SQL query inside the same
transaction. This is because the Read Stability isolation level does not prevent
the appearance of phantom rows.

2. In Terminal A, commit the update by typing in the command
commit

3. Terminate the database connection in terminal A:
connect reset

4. Then, terminate the database connection in terminal B:
db2 connect reset

7. Uncommitted Read

Now that we know what the difference between repeatable read and read
stability is, we can see how the lowest isolation level functions. The uncommitted
read isolation level can be useful when using read-only tables or only select
statements. When using uncommitted read, uncommitted data from other
transactions is read.

Application A will execute a query that updates a row using RR. Application B will
attempt to read the same row using CS and UR.

IBM DB2 9.7 Academic Workshop 199 of 335

25

7.1 The “Uncommitted Read” scenario: Cursor
Stability

7.1.1 Execute an update query in Terminal A
1. We need to change the isolation of the current CLP session of Terminal A

to repeatable read. This must be done before connecting to a database.
change isolation to RR

2. Connect to database “sample”.
connect to sample

3. Now we can perform a quick query to update the current values for
column “column1”.

update tb1 set column1 = 40

7.1.2 Execute a read query in Terminal B
1. Using CS, Terminal B will attempt to read the data being locked by

Terminal A.
db2 connect to sample
db2 "select * from tb1"

We can see that the select query waits for Terminal A to commit before
reading the data.

IBM DB2 9.7 Academic Workshop 200 of 335

26

7.1.3 Releasing the lock
1. With the 2 terminals open beside each other, we will observe the effect of

committing the query in Terminal A. In Terminal A, commit the transaction
by executing the following command

commit

IBM DB2 9.7 Academic Workshop 201 of 335

27

We can see that terminal B’s query instantly completed. The block by
Terminal A has been released and the transaction on Terminal B was
allowed to read the committed data.

2. Terminate the database connection in terminal B:
db2 connect reset

IBM DB2 9.7 Academic Workshop 202 of 335

28

7.2 The “Uncommitted Read” scenario:
Uncommitted Read

7.2.1 Execute an update query in Terminal A
1. We will perform a quick query to update the current values for column

“column1”.
update tb1 set column1 = 50

7.2.2 Execute a read query in Terminal B
1. Terminal B will attempt to read the data being locked by Terminal A using

UR.
db2 change isolation to UR
db2 connect to sample
db2 "select * from tb1"

We can see that the select query under the uncommitted read isolation
level does not wait for Terminal A to commit before reading the data.
Instead the values returned are from the uncommitted transaction from
Terminal A.

If the transaction from Terminal A executes a rollback, the data listed in
Terminal B does not reflect the actual data in TB1. This phenomenon is
called a “dirty read”.

IBM DB2 9.7 Academic Workshop 203 of 335

29

2. In Terminal A, commit the update by typing in the command:

commit

3. Terminate the database connection in terminal A:
connect reset

4. Then, terminate the database connection in terminal B:
db2 connect reset

IBM DB2 9.7 Academic Workshop 204 of 335

© 2010 IBM Corporation

Information Management

Information Management Ecosystem Partnerships
IBM Canada Lab

Summer/Fall 2010

DB2® Security

 2 © 2010 IBM Corporation

Information Management

Agenda

� Authentication

� Trusted Context

� Authorization

� Authorities

� Privileges

� Label-Based Access Control (LBAC)

� Roles

IBM DB2 9.7 Academic Workshop 205 of 335

 3 © 2010 IBM Corporation

Information Management

DB2 Security Overview

� There are two main mechanisms (and subcategories) within
DB2 that allow you to implement a security plan

� Authentication

� Authorization
�Authorities
�Privileges

sampleTable

Authentication Authorization

Did John enter the
correct password?

Does John have authorization to
access data in �sampletable�?

CONNECT TO SAMPLE

USER John USING

password;

select * from sampletable

SAMPLE DB

 4 © 2010 IBM Corporation

Information Management

Authentication

� Determining that you are who you say
you are

� Can rely on the operating system�s
authentication mechanism

� Can rely on a separate product

� Where and how DB2 authenticates users
�SERVER
�SERVER_ENCRYPT
�CLIENT
�KERBEROS
�etc...

Client Server

AUTHENTICATION = SERVER

Did John enter the
correct password?

Client Server

AUTHENTICATION = CLIENT

CONNECT TO SAMPLE

USER John USING

password;

Did John enter the
correct password?

CONNECT TO SAMPLE

USER John USING

password;

IBM DB2 9.7 Academic Workshop 206 of 335

 5 © 2010 IBM Corporation

Information Management

Configuration of Authentication on DB2 Server

� Authentication type is defined in the Database Manager
configuration file (DBM CFG)

� To configure how and where DB2 authenticates users, set
the authentication parameter at the DB2 server

db2 "UPDATE DBM CFG USING AUTHENTICATION CLIENT"

db2 "GET DBM CFG"

 6 © 2010 IBM Corporation

Information Management

Trusted Context

� Provide a means whereby the end-user identity in a three-tier
environment can be easily and efficiently propagated to the
database server

� Introduce the concept of a trusted context between a
database server and a specific application tier

� Why not just keep one common user ID?
�Loss of user identity for auditing purposes
�Hard to distinguish actions needed by app vs needed by

user
�Middle tier is �over granted� privileges
�If ID is compromised, high risk of security exposure

IBM DB2 9.7 Academic Workshop 207 of 335

 7 © 2010 IBM Corporation

Information Management

Trusted Context

� Implementation Considerations
�Users need to be identified individually but do not want

expensive new connections
�How do we identify a trusted source?

� Solution: Create a �Trusted Context�
�A trusted relationship between the DB and the application

� Switch current user ID
� Acquire additional privileges via role inheritance

�Relationship identified by connection attributes
� IP Address, Domain Name, Authorization ID, Data

Encryption used

CREATE TRUSTED CONTEXT ctxt
BASED UPON CONNECTION USING SYSTEM AUTHID smith
ATTRIBUTES (ADDRESS �192.168.2.27�)
DEFAULT ROLE managerRole ENABLE

 8 © 2010 IBM Corporation

Information Management

Authorization

� Verifies if an authorization ID has sufficient privileges to
perform the desired database operation

�Authorities
� Provide a way to group privileges and to control

maintenance and utility operations (SYSADM, DBADM,
SECADM, SYSMAINT, SYSCTRL, �)

�Privileges
� Allow a certain action to be taken on a database object

(SELECT, UPDATE, DELETE, etc�)
� LBAC provides a more granular approach, granting

read/write access to individual rows/columns

IBM DB2 9.7 Academic Workshop 208 of 335

 9 © 2010 IBM Corporation

Information Management

Authorities

� Instance-level Authorities
�SYSADM, SYSCTRL, SYSMAINT, SYSMON
�Eg: SYSADM - control over all resources created and

maintained by the Database Manager (instance)

� Database-level Authorities
�DBADM, SECADM, SQLADM, WLMADM, EXPLAIN,

ACCESSCTRL, DATAACCESS, etc

SYSMAINT

SYSCTRL

SYSADM

SECADM

LOAD

DBADM

Instance

 10 © 2010 IBM Corporation

Information Management

System Administrator (SYSADM) Authority

� Highest level of administrative authority at the instance level

� Only a user with SYSADM authority can perform the
following functions:

�Upgrade and restore a database
�Change the database manager configuration file including

specifying the groups having SYSADM, SYSCTRL,
SYSMAINT, or SYSMON authority

� Does not implicit get DBADM authority, so does not
automatically have access to data

� Specified by the sysadm_group parameter in the DBM CFG

� Example: Granting SYSADM authority to the group 'grp':

UPDATE DBM CFG USING SYSADM_GROUP grp

IBM DB2 9.7 Academic Workshop 209 of 335

 11 © 2010 IBM Corporation

Information Management

Database Administrator (DBADM) Authority

� Administrative authority over a single database

� Does not automatically included the ability to access data
�Ability to create objects and issue database commands
�Create, alter, and drop non-security related database objects
�Read log files
�Create, activate, and drop event monitors
�Query the state of a table space
�Update log history files
�Quiesce a table space
�Reorganize a table
�Collect catalog statistics using the RUNSTATS utility

� DBADM authority can only be granted or revoked by the
SECADM

� Can be granted to a user, a group, or a role

 12 © 2010 IBM Corporation

Information Management

Security Administrator (SECADM) Authority

� Creates and manages security related database objects over
a single database:

�Grant and revoke database privileges and authorities
�Create and drop:

� Security label components
� Security policies
� Security labels
� Trusted contexts
� Audit policies
� Roles

�Execute audit routines

� Has no inherent ability to access data stored in user tables

� Can only be granted by a user with SECADM authority

IBM DB2 9.7 Academic Workshop 210 of 335

 13 © 2010 IBM Corporation

Information Management

Privileges

� Schema Privilege
� CREATEIN allows the user to create objects within the schema
� ALTERIN allows the user to alter objects within the schema
� DROPIN allows the user to drop objects from within the schema

� Tablespace Privilege
� USE allows the user to create tables within the tablespace

� Table and View Privilege
� CONTROL provides the user with all privileges for a table or view including the

ability to drop it, and to grant and revoke individual table privileges
� DELETE allows the user to delete rows from a table or view.

� INSERT allows the user to insert a row into a table or view, and to run the
IMPORT utility.

� SELECT allows the user to retrieve rows from a table or view, to create a view
on a table, and to run the EXPORT utility.

� UPDATE allows the user to change an entry in a table, a view, or for one or
more specific columns in a table or view

� Table Only Privileges
� ALTER allows the user to modify on a table

� INDEX allows the user to create an index on a table
� REFERENCES allows the user to create and drop a foreign key, specifying the

table as the parent in a relationship

 14 © 2010 IBM Corporation

Information Management

Privileges

� Package Privilege
�CONTROL provides the user with the ability to rebind, drop, or

execute a package
� BIND allows the user to rebind or bind that package and to add new

package versions of the same package name and creator

� EXECUTE allows the user to execute or run a package

� Index Privileges
�CONTROL allows the user to drop the index

� Sequence Privilege
�USAGE allows the user to use NEXT VALUE and PREVIOUS

VALUE expressions for the sequence
�ALTER allows the user to perform tasks such as restarting the

sequence or changing the increment for future sequence values

� Routine Privilege
�EXECUTE allows the users to invoke a routine, create a function

that is sourced from that routine, and reference the routine in any
DDL statement such as CREATE VIEW or CREATE TRIGGER

IBM DB2 9.7 Academic Workshop 211 of 335

 15 © 2010 IBM Corporation

Information Management

Granting Privileges

� Explicit
� Privileges can be explicitly given to users or groups via the GRANT and REVOKE

commands

� Implicit
� DB2 may grant privileges automatically when certain commands are issued

� Indirect
� Packages contain SQL statements in an executable format. The user only requires

EXECUTE privilege to run them
� Example: package1 contains the following static SQL statements

� In this case a user with EXECUTE privilege on package1 is indirectly granted
SELECT and INSERT privilege on table TEST

select * from test

insert into test values (1,2,3)

db2 grant select on table db2inst1.person to user employee

db2 create table mytable User automatically gains
full access to the table

 16 © 2010 IBM Corporation

Information Management

Granular Privileges

� Why granular privileges?
�The need to restrict access to specific portion of data in a

table

� How to implement?
�Views

1)Simulate a new table
2)Create a view (subset of the data from the base table)
3)Authorize the user to access the view
4)Revoke access from the user to the base table

�LBAC (Label Based Access Control)
� Can restrict read/write access to row(s) and/or column(s) of

a table

IBM DB2 9.7 Academic Workshop 212 of 335

 17 © 2010 IBM Corporation

Information Management

Granular Privileges � Views

� Provides a different way of
looking at data in one or more
tables; it is a named
specification of a result table.

� Allows multiple users to see
different presentations of the
same data

� Nice for simple security policy,
but complicated to manage in
large settings

LASTNAME WORKDIV OFFICE

Smith A0 Toronto

Crnic A0 Vancouver

Johnson B1 Calgary

Carlson C2 Ottawa

Pogue B1 Toronto

Ring B1 Victoria

Barisic A0 Ottawa

EMPLOYEE_INFO VIEW

LASTNAME WORKDIV OFFICE SALARY BONUS

Smith A0 Toronto 60000 2500

Crnic A0 Vancouver 65000 1500

Johnson B1 Calgary 55000 1000

Carlson C2 Ottawa 70000 2200

Pogue B1 Toronto 50000 2800

Ring B1 Victoria 52000 3000

Barisic A0 Ottawa 67000 1200

EMPLOYEE TABLE

CREATE VIEW EMPLOYEE_INFO AS (
 SELECT LASTNAME, WORKDIV, OFFICE
 FROM EMPLOYEE);

LASTNAME WORKDIV OFFICE SALARY BONUS

Smith A0 Toronto 60000 2500

Crnic A0 Vancouver 65000 1500

Johnson B1 Calgary 55000 1000

Carlson C2 Ottawa 70000 2200

Pogue B1 Toronto 50000 2800

Ring B1 Victoria 52000 3000

Barisic A0 Ottawa 67000 1200

EMPLOYEE TABLE

CREATE VIEW EMPLOYEE_INFO AS (
 SELECT LASTNAME, WORKDIV, OFFICE
 FROM EMPLOYEE);

 18 © 2010 IBM Corporation

Information Management

Granular Privileges � Label Based Access Control (LBAC)

� Access Control at the table level via traditional privileges
�Does the user hold the required privilege to perform the

requested operation on the table?

� Label Based Access Control
�Sets security labels at the row level, column level or both

� How does LBAC work?
�Users and Objects (rows/columns) are assigned labels that

are later compared to authorize access

Employee HR Manager

DEPT_1

DEPT_2

IBM DB2 9.7 Academic Workshop 213 of 335

 19 © 2010 IBM Corporation

Information Management

Roles

� Database object that groups together one or more privileges and
can be assigned to users, groups, PUBLIC or to other roles via a
GRANT statement.

� Benefits
�SECADMs control access at a level of abstraction that is close to

the structure of the organization. (Eg. Manager, HR, Employee)
�The assignment and maintenance of privileges is simplified.

� �User roles change Revoke old role and grant new role � not
specific privileges

� �Role has more responsibility All users inherit the new privileges

Dayna inherits all
privileges and labels of the

role �manager�

 20 © 2010 IBM Corporation

Information Management

Roles � Implementation

The Basics

� Step 1 � Create Role

� Step 2 � Assign Privileges to
a Role

� Step 3 � Grant Role to Users

� Step 4 � Revoke Role as
Necessary

GRANT ROLE DEVELOPER TO
USER BOB, USER ALICE

GRANT SELECT ON TABLE
SERVER TO ROLE
DEVELOPER

CREATE ROLE DEVELOPER

REVOKE ROLE DEVELOPER
FROM USER BOB

Extra Features

� Role Admin Option
� Allows the specified user to

grant or revoke the role to or
from others

� Role Hierarchies
� A role hierarchy is formed

when one role is granted
membership in another
role.

GRANT ROLE DEVELOPER TO USER
BOB WITH ADMIN OPTION

CREATE ROLE DOCTOR

CREATE ROLE SPECIALIST

CREATE ROLE SURGEON

GRANT ROLE DOCTOR TO ROLE
SPECIALIST

GRANT ROLE SPECIALIST TO
ROLE SURGEON

IBM DB2 9.7 Academic Workshop 214 of 335

 21 © 2010 IBM Corporation

Information Management

Summary

� Authentication
�Verifies the user are who they say they are using the

underlying operating system or other security protocols

� Trusted Context
�Solves the problems associated with loss of user identity in a

3-tiered environment

� Authorization
�Controls the access to database objects

� Granular Privileges
�Access to specific portion of data in a table can be restricted

using views and LBAC

� Roles
�Allows easy management of privileges

© 2010 IBM Corporation

Information Management

Information Management Ecosystem Partnerships
IBM Canada Lab

Summer/Fall 2010Questions?

E-mail: imschool@us.ibm.com
Subject: �DB2 Academic Workshop�

IBM DB2 9.7 Academic Workshop 215 of 335

IBM DB2® 9.7

DB2 Security
Hands-On Lab

I

Information Management Ecosystem Partnerships

IBM Canada Lab

IBM DB2 9.7 Academic Workshop 216 of 335

2

Contents

CONTENTS... 2
1. INTRODUCTION .. 3
2. SUGGESTED READING ... 3
3. BASIC SETUP ... 3

3.1 Environment Setup Requirements.. 3
3.2 Preparation Steps... 4

4. AUTHENTICATION.. 4
4.1 Where Does Authentication Take Place?... 4
4.2 Specifying Authentication Type on the Server.. 6
4.3 Specifying Authentication Type on the Client ... 7
4.4 Using Data Studio to Manage Authentication Parameters 7

5. AUTHORIZATION.. 10
5.1 Authorities... 10

5.1.1 INSTANCE-LEVEL AUTHORITIES .. 10
5.1.2 DATABASE-LEVEL AUTHORITIES ... 11

5.2 Privileges .. 12
5.3 Exercise - Granting and Revoking Authorities and Privileges 12
5.4 Granular Privileges - Views .. 14

6. ROLE.. 16
6.1 Example - Roles ... 16

IBM DB2 9.7 Academic Workshop 217 of 335

3

1. Introduction

Your database system may contain confidential and sensitive data so it is important to
safeguard your information. In order to prevent identity theft, it is crucial to control who
has access to your database and limit the operations that the user can perform on the
data.

In this lab, you will learn how to control access to the instance, how to control access to
the database itself, and finally how to control access to the data and data objects within
the database.

By the end of this lab, you will be able to:

 Grant and revoke authorities to/from users
 Grant and revoke privileges to/from users
 Create roles
 Grant and revoke roles to/from users

2. Suggested reading

Understanding DB2 9 Security
by Rebecca Bond (Author), Kevin Yeung-Kuen See (Author), Carmen Ka Man Wong
(Author), Yuk-Kuen Henry Chan (Author)

3. Basic Setup

3.1 Environment Setup Requirements
To complete this lab you will need the following:

• DB2 9.7 Academic Workshop VMware® image
• VMware Player 2.x or VMware Workstation 5.x or later

For help on how to obtain these components please follow the instructions specified in
VMware Basics and Introduction from module 1.

IBM DB2 9.7 Academic Workshop 218 of 335

4

3.2 Preparation Steps

1. Start the VMware® image. Once loaded and prompted for login credentials, use the
user “db2inst1” to provide DBADM authority:

User: db2inst1
Password: password

2. Open a terminal window by right-clicking on the Desktop and choosing the
“Open Terminal” item:

3. Start the Database Manager by issuing the following command:

db2start

Note: Disregard the warning message if the database manager is already active.

For executing this lab, you will need the DB2’s sample database created in its original
format.

Execute the commands below to drop (if it already exists) and recreate the SAMPLE
database:

db2 force applications all

db2 drop db sample

db2sampl

4. Authentication

When you first attempt to access an instance or database, the authentication system will
try to determine if you are who you say you are. DB2 authentication works closely with
the authentication mechanism of the underlying operating system to verify your user IDs
and passwords. DB2 can also use third-party authentication facilities such as Kerberos
to authenticate users.

By using an external authentication system outside of DB2, DB2 does not need to store
a redundant set of passwords and sensitive credentials. This minimizes security
vulnerabilities and hacker attacks.

4.1 Where Does Authentication Take Place?

Authentication type defines where and how authentication will take place. This is
specified by the AUTHENTICATION parameter in the database manager configuration

IBM DB2 9.7 Academic Workshop 219 of 335

5

file on the server, thus all the databases in an instance will have the same authentication
type. On the client, the authentication type is specified when a remote database is
cataloged.

Authentication Type Description
SERVER All authentications take place at the server. When you

connect to a database, you will have to include your user ID
and password. This information will then be verified against
the credentials at the server’s operating system.

SERVER_ENCRYPT This is similar to SERVER authentication type where
authentication occurs at the server, but the password is
encrypted by DB2 at the client before it is sent to the server
for authentication.

CLIENT Authentication occurs at the client’s operating system.
KERBEROS Authentication occurs at the server and is handled by

Kerberos security software. The KERBEROS authentication
type is available if both the DB2 server and client operating
systems support Kerberos. The Kerberos security protocol
uses conventional cryptography to create a shared secret
key which becomes the credentials used to verify the
identity of the user. This eliminates the need to pass a user
ID and password across the network.

KRB_SERVER_ENCRYPT This authentication type is the same as KEBREOS, except
it will use SERVER_ENCRYPT if the client does not
support Kerberos security system. If none of these options
are available, the client will receive a connection error and
will not be able to connect.

DATA_ENCRYPT Authentication occurs at the server and its behaviour is
similar to SERVER_ENCRYPT. In this type of
authentication, not only is the password encrypted, but all
user data is also encrypted during transmission between
the client and the server.

DATA_ENCRYPT_CMP This type of authentication is identical to DATA_ENCRYPT.
However, this setting provides compatibility to those clients
who do not support DATA_ENCRYPT authentication and
will instead connect using SERVER_ENCRYPT so user
data will not be encrypted.

GSSPLUGIN Authentication occurs at the server using an external GSS-
API plug-in. If the client’s authentication type is not
specified, the server will send a list of server-supported
plug-ins to the client. These plug-ins are listed in the
srvcon_gssplugin_list database manager configuration
parameter. The client then selects the first plug-in found in
the client plug-in directory from the list. If the client does not
support any plug-in in the list, the client is authenticated
using the KERBEROS authentication method.

GSS_SERVER_ENCRYPT Authentication occurs at the server using either the
GSSPLUGIN or the SERVER_ENCRYPT authentication

IBM DB2 9.7 Academic Workshop 220 of 335

6

method. Authentication uses a GSS-API plug-in and if the
client does not support any of the plug-ins found in the
server-supported plug-ins list, the client is authenticated
using KERBEROS. If the client does not support the
Kerberos security protocol, the client is authenticated using
the SERVER_ENCRYPT authentication method.

4.2 Specifying Authentication Type on the
Server

1. To check the current authentication type, issue the following command. In this case,
the current authentication method is SERVER.

db2 GET DATABASE MANAGER CONFIGURATION

2. Change the authentication setting to SERVER_ENCRYPT by executing the following
command. You must be a member of the SYSADM group to make changes to security-
related configuration parameters for an instance.

db2 UPDATE DBM CFG USING AUTHENTICATION SERVER_ENCRYPT

3. Re-issue the command from step 1 to check the current authentication setting.

4. Change the authentication setting back to SERVER by executing the following
command.

db2 UPDATE DBM CFG USING AUTHENTICATION SERVER

IBM DB2 9.7 Academic Workshop 221 of 335

7

4.3 Specifying Authentication Type on the
Client

The client authentication type is stored in the client’s database directory. To see the list
of databases known to the system, use the following command:

db2 LIST DATABASE DIRECTORY

To change the authentication type for a connection, the database needs to be re-
cataloged from the database directory with the new authentication type.

The specification of the authentication type when cataloging the remote client is optional.
If an authentication type is specified, it must match or be compatible with the value
specified at the data server. If they do not match, the connection will fail.

To catalog a database connection using the SERVER_ENCRYPT authentication you
can enter the following command:

db2 CATALOG DATABASE sample AT NODE mynode AUTHENTICATION
SERVER_ENCRYPT

Note: since the database could be already cataloged, you may receive the error
message:
 SQL1005N The database alias "sample" already exists in either the local
 database directory or system database directory.

4.4 Using Data Studio to Manage
Authentication Parameters

Configuration of the authentication type can also be easily managed through the Data
Studio.

1. Launch Data Studio by clicking on the Computer button in the bottom left corner of
the screen, and select IBM Data Studio 2.2.

IBM DB2 9.7 Academic Workshop 222 of 335

8

2. In the Select a workspace dialog, accept the default path and check the Use this as
the default and do not ask again checkbox. Click OK.

3. Minimize the Welcome window to bring you into the Data perspective as shown
below.

4. Connect to the database Sample.

From the Database Source Explorer panel (bottom left panel), expand Connections.
Right-click on the SAMPLE database and select Connect. Login with the following
credentials:

User: db2inst1
Password: password

5. After a connection has been established, right click on Instance and select
Configure to see the instance configuration parameters.

IBM DB2 9.7 Academic Workshop 223 of 335

9

The authentication parameter is shown at the top of the configuration parameters dialog.
To change the current setting, simply double click on the parameter and specify a new
value for authentication.

IBM DB2 9.7 Academic Workshop 224 of 335

10

5. Authorization

After a user has been authenticated, authorization serves as the second security
mechanism which determines what operations a user can perform within a database or
instance. Authorization consists of the privileges, authorities, roles, and label-based
access control (LBAC) credentials.

A user’s authorities determine his/her ability to perform high-level database and instance
management operations.

Privileges provide more granular control than authorities. Privileges define the objects
that a user can create or drop and commands that a user can use to access objects like
tables, views, indexes, and packages.

Roles are a way of collecting users together, so that privileges can be managed together
instead of individually.

LBAC uses security labels to control who has read access and who has write access to
individual rows and/or columns in a table. LBAC is not included in DB2 Express-C and
the implementation of LBAC is beyond the scope of this lab.

5.1 Authorities

Authorities are needed for managing databases and instances and can be divided into
two groups:

• Instance-level authorities
• Database-level authorities

5.1.1 Instance-level Authorities

Instance level authorities enable you to perform instance-wide functions, such as
creating and upgrading databases, managing table spaces, and monitoring activity and
performance on your instance. No instance-level authority provides access to data in
database tables.

Database-level Authorities Descriptions
SYSADM for users managing the instance as a whole
SYSCTRL for users administering a database manager instance
SYSMAINT for users maintaining databases within an instance

IBM DB2 9.7 Academic Workshop 225 of 335

11

SYSMON for users monitoring the instance and its databases

Instance-level authorities are granted through the database manager configuration and
can only be assigned to groups. Groups are defined at the operating system level and
individual users are assigned to these groups. To grant SYSADM, SYSCTRL,
SYSMAINT or SYSMON authority to a group, set the database manager configuration
parameters SYSADM_GROUP, SYSCTRL_GROUP, SYSMAINT_GROUP and
SYSMON_GROUP to an operating system group.

By default, on UNIX systems, the SYSADM group is set to the primary group of the
instance owner DB2GRP1. Any users that belong to this group have SYSADM authority.
On Windows, members of the local Administrators group are all granted SYSADM
authority.

From the command below, you can see that DB2GRP1 is defined as SYSADM group.

db2 get dbm cfg | grep SYSADM_GROUP

5.1.2 Database-level Authorities

Database authorities enable users to perform activities at the database level, thus
allowing the users to perform such functions as granting and revoking privileges,
inserting, selecting, deleting and updating data, and managing workloads.

Database-level Authorities Descriptions
SECADM for users managing security within a database

DBADM for users administering a database
ACCESSCTRL for users who need to grant and revoke authorities and

privileges (except for SECADM, DBADM, ACCESSCTRL,
and DATAACCESS authority, SECADM authority is
required to grant and revoke these authorities)

DATAACCESS for users who need to access data

SQLADM

for users who monitor and tune SQL queries

WLMADM for users who manage workloads

EXPLAIN for users who need to explain query plans

IBM DB2 9.7 Academic Workshop 226 of 335

12

5.2 Privileges

Privileges are more granular than authorities. They define the objects that a user or
group can create, alter, or drop, and access database objects. Privileges can be
obtained in three different ways:

Explicit: Privileges can be explicitly be given or taken away by users with
ACCESSCTRL authority, SECADM authority or CONTROL privilege on that object using
the GRANT or REVOKE command. A user who has been assigned privilege with the
WITH GRANT OPTION on an object can also explicitly grant privileges.

Implicit: When a user creates a database object, that user will implicitly receive all
privileges for that object. For example, when a user creates a database, that user
implicitly receives DBADM authority for that database.

Indirect: An indirect privilege is usually associated with a package. When a user
executes a package, it may require privileges that the user does not have. The user will
be indirectly given these privileges temporarily, in order to execute the package.

5.3 Exercise - Granting and Revoking
Authorities and Privileges

Thus far in the lab, you have been issuing all database commands as the instance
administrator (db2inst1) which has privileges to access all the utilities, data, and
database objects within DB2. It is important that users be only given privileges that are
necessary to complete their tasks.

In the following scenario a new member has joined your team. We will look at how to
assign specific authorities and privileges to him to safeguard the security of the
database.

1. Open a terminal window by right-clicking on the Desktop and choosing the “Open
Terminal” item.

2. DB2 uses the underlying operating system’s security to manage users and
passwords. Thus we need to create the new users and groups at the operating system
level.

Login to the operating system as the root user and add a new user USERDEV. Change
his password to ‘password’

su -
 Password: password

useradd userdev
passwd userdev

New password: password

IBM DB2 9.7 Academic Workshop 227 of 335

13

exit

3. Authorities and privileges are implicitly denied if not granted. When the new user is
added, he has no authorities or privileges other than those defined in the PUBLIC group.

Try querying the ‘EMPLOYEE’ table of sample database as user USERDEV and you will
see that the operation will be denied because USERDEV doesn’t have the required
authorization or privilege.

db2
CONNECT TO SAMPLE USER userdev USING password
SELECT * FROM DB2INST1.EMPLOYEE

4. USERDEV is an application developer within your team and he will develop and test
programs. He needs to have SELECT, INSERT, UPDATE and DELETE access to the
various tables in the database. He also needs to be able to add new packages to the
database and execute the application to test it; therefore, he needs to be granted the
BINDADD authority.

To grant these privileges to USERDEV, you must be a SYSADM. Log in to your
machine as the instance owner for DB2 (db2inst1), and issue the GRANT command.

CONNECT TO SAMPLE USER db2inst1 USING password
GRANT CREATETAB, BINDADD, CONNECT ON DATABASE TO USER userdev
GRANT SELECT, INSERT, UPDATE, DELETE ON TABLE employee TO USER userdev

IBM DB2 9.7 Academic Workshop 228 of 335

14

5. USERDEV now has the privilege to query and modify the table EMPLOYEE. Try re-
running the commands from step 3.

5.4 Granular Privileges - Views

There are two ways in which access to specific portions of data in a table can be
restricted: views or label based access control (LBAC). LBAC is not included in DB2
Express-C and the implementation of LBAC is beyond the scope of this lab. We will
instead focus on the implementation of views.

Views are virtual tables (computed dynamically and not stored explicitly) that are derived
from one or more tables or views. They can be used to provide a customized subset of
data to the users, allowing them to see different presentations of the same set of data or
hide data to which a user should not have access. Views can perform delete, insert and

IBM DB2 9.7 Academic Workshop 229 of 335

15

update operations, or be read-only. The classification indicates the kind of SQL
operations allowed against the view.

Using the employee table from sample database, we will demonstrate how to implement
views.

The employee table contains confidential information such as employees’ salaries and
bonuses. This information should not be seen by everyone. In order to protect this
confidential information, a view can be created based on the employee table to restrict
users from seeing certain columns. This will grant users access to the view rather than
to the base table.

1. We would like to create a view that contains a directory of those who are in
department E11. This directory will contain only first name, last name, phone number
and job role.

CONNECT TO SAMPLE
CREATE VIEW E11INFO AS SELECT FIRSTNME, LASTNAME, PHONENO, JOB FROM
EMPLOYEE WHERE WORKDEPT='E11'

2. A user issuing a select statement against the view will see only four columns:

SELECT * FROM E11INFO

3. The last step includes revoking access to the base table and granting access to the
view instead:

REVOKE ALL ON employee FROM USER userdev
GRANT SELECT ON e11info TO USER userdev

IBM DB2 9.7 Academic Workshop 230 of 335

16

6. Role

A role is a database object that may group together one or more privileges and can be
assigned to users, groups, PUBLIC or to other roles via a GRANT statement. Roles
simplify the administration and management of privileges.

Roles can be modeled after the structure of an organization. They can be created to
map directly to specific job functions within the organizations. Instead of granting the
same set of privileges to each individual user in a particular job function, this set of
privileges can be granted to a role and then users are granted membership in the roles
that reflect their job responsibilities. As their job responsibilities change, their
membership in roles can be easily granted and revoked.

6.1 Example - Roles

Continuing the scenario from the previous section, your team is expending and more
application developers have joined your team. Instead of managing each of these
individuals’ privileges, it is easier to administer and manage if roles are used.

The security administrator holds the authority to create, drop, grant, revoke and
comment on a role.

1. Connect to the sample database and create a new role called ‘developer’.

CONNECT TO SAMPLE
CREATE ROLE DEVELOPER

2. After a role has been defined, use the GRANT statement to assign authorities and
privileges to the role.

GRANT CREATETAB, BINDADD, CONNECT ON DATABASE TO ROLE developer
GRANT SELECT, INSERT, UPDATE, DELETE ON TABLE db2inst1.employee TO ROLE
developer

3. The role DEVELOPER is granted to user USERDEV:

GRANT ROLE DEVELOPER TO USER USERDEV

4. When USERDEV changes his role and is no longer a developer, his role can be
revoked from the database.

REVOKE ROLE DEVELOPER FROM USER USERDEV

IBM DB2 9.7 Academic Workshop 231 of 335

© 2010 IBM Corporation

Information Management

Information Management Ecosystem Partnerships
IBM Canada Lab

Summer/Fall 2010

DB2® Backup and Recovery

 2 © 2010 IBM Corporation

Information Management

Why Backup my Data?

� Backing up data is vital for businesses
� Lost information can cause a major crisis or

worse, lead to business failure.

� Common problems:
� System outage

� Power failure
� Hardware failure

� Transaction failure
� Users may inadvertently corrupt the database

� Media failure
� Disk drive becomes unusable

� Disaster
� Database facility damaged by fire, flooding

or other catastrophe

DB2 backup and recovery methods are designed to
help you keeping your information safe!

IBM DB2 9.7 Academic Workshop 232 of 335

 3 © 2010 IBM Corporation

Information Management

Basic Concept of Database Backup and Recovery

� At t1, a database backup operation is performed

� At t2, a problem that damages the database occurs

� At t3, all committed data is recovered

logs
Database

at

t1

Database

at

t1

database

Backup

Image

Perform a
database
backup

t1

Database continues to
process transactions.
Transactions are
recorded in log files

Disaster strikes, Database
is damaged

t2

Perform a database restore
using the backup image. The
restored database is
identical to the database at
t1

t3

After restore, reapply the
transactions committed
between t1 and t2 using the
log files.

 4 © 2010 IBM Corporation

Information Management

DB2 Transaction Logs

� Keep track of changes made to database objects and their data

� During the recovery process, DB2 examines these logs and decides which
changes to redo or undo

� Can be stored in files or on raw devices

� The transactions in the log
buffer are recorded in the
log device upon one of the
following events:

� Log buffer is full
� Number of commits

reach MINCOMMIT value
� One second has lapsed

Package cache

Bufferpool

Disk for the
database

Page indexes

Information to be
updated is retrieved from

disk (if needed)

Update
transaction

Log Buffer

Update
transaction

Old
transactions

Disk for
logs

DB2 Memory (in RAM)

IBM DB2 9.7 Academic Workshop 233 of 335

 5 © 2010 IBM Corporation

Information Management

Log File States

� Active logs
� Transactions that have not been committed or rolled back

� Online archive logs

� Committed and externalized logs in the active log directory

� Offline archive logs

� Committed and externalized logs in a separate repository

Package cache

Bufferpool

Disk for
the

database

Page
indexesInformation to be

updated is retrieved
from disk (if needed)

Update
transaction

Log Buffer

Update
transaction

Old
transactions

Active
Log

Directory

DB2 Memory (in RAM)

OFFLINE Archive Logs

DB2 Memory (in RAM)

 6 © 2010 IBM Corporation

Information Management

Circular Logging

� Primary log files used to record all transactions; reused when transactions are
committed

� Secondary log files allocated when next primary log file is not available due to active
transactions

� If both primary and secondary log limit are full and can not be reused, a log full
condition occurs and SQL0964C error message is returned

� Only full, offline backups of the database are allowed

� Cannot have roll-forward recovery

Primary
logs

Transactions DB2 Server

1

Secondary logs

1

2

3

4

n

n

Active log path

Active log
 file

IBM DB2 9.7 Academic Workshop 234 of 335

 7 © 2010 IBM Corporation

Information Management

Archival Logging

� Enable with LOGARCHMETH1 database configuration parameter

� History of log files is maintained, in order to allow roll forward recovery
and online backup

� Logs can be optionally archived to an archive location when no longer
active to avoid exhaustion of log directory

Archive Log Directory Active Log Directory

ACTIVE � Contains information
for non-committed transactions.

When all preallocated log files are
filled,more log files are allocated

and used.
Filled log files may be moved to a

different storage location

ONLINE ARCHIVE
Contains information for
committed transactions.

Stored in the ACTIVE
log subdirectory.

 8 © 2010 IBM Corporation

Information Management

Infinite Logging

� Infinite logging provides infinite active log space
�Enabled by setting LOGSECOND to -1

� Secondary log files are allocated until the unit of work commits or
storage is exhausted

� Archived logs can hinder performance for rollback and crash
recovery

� Database must be configured to use archival logging

� Up to 256 log files (primary + secondary)

� Control parameters
�NUM_LOG_SPAN � number of log files an active transaction can

span
�MAX_LOG � Percentage of active primary log file space that a

single transaction could consume

IBM DB2 9.7 Academic Workshop 235 of 335

 9 © 2010 IBM Corporation

Information Management

Database Backup

� Copy of a database or table space
�User data
�DB2 catalogs
�All control files, e.g. buffer pool files,

table space file, database configuration
file

� Backup modes:
�Offline Backup

� Does not allow other applications or processes to access
the database

� Only option when using circular logging
�Online Backup

� Allows other applications or processes to access the
database

� Available to users during backup
� Can backup to disk, tape, TSM and other storage vendors

 10 © 2010 IBM Corporation

Information Management

Database Backup � Syntax

db2 backup database <db_name> <online> to <dest_path>

Online backup example

db2 backup database mydb online to /home/db2inst1/backups

Offline backup example

db2 backup database mydb to /home/db2inst1/backups

IBM DB2 9.7 Academic Workshop 236 of 335

 11 © 2010 IBM Corporation

Information Management

Database Backup � File Naming Convention

SAMPLE.0.DB2INST.NODE0000.CATN0000.20100314131259.001

Alias Instance Catalog Node MinuteYear

Type Node Month

Day

Hour Second

Sequence

Backup Type:
0 = Full Backup
3 = Tablespace Backup

 12 © 2010 IBM Corporation

Information Management

Table space Backup

� Enables user to backup a subset of database

� Multiple table spaces can be specified

� Database must be using archival logging

� Table space backup can run in both online and offline backup

� Table space can be restored from either a database backup or
table space backup of the given table space

� Use the keyword TABLESPACE to specify table spaces

db2 backup database mydb1 TABLESPACE (TBSP1) ONLINE to
/home/db2inst1/backup

IBM DB2 9.7 Academic Workshop 237 of 335

 13 © 2010 IBM Corporation

Information Management

Incremental Backups

� Incremental (a.k.a. cumulative) - Backup of all database data that has changed since the
most recent, successful, full backup operation

� Incremental Delta - Backup of all database data that has changed since the last
successful backup (full, incremental, or delta) operation.

� Need to have TRACKMOD database configuration parameter ON

� Supports both database and table space backups.

� Suitable for large databases, considerable savings by only backing up incremental
changes.

Delta
Backups

Fu
ll

Fu
ll

Fu
ll

Fu
ll

Cumulative
Backups

Sunday SundayMon Tue Wed Thu Fri Sat

 14 © 2010 IBM Corporation

Information Management

Database Backup � Compression

� DB2 backups can now be automatically compressed
� Significantly reduce backup storage costs

� Performance characteristics

� CPU costs typically increased (due to compression computation)

� Media I/O time typically decreased (due to decreased image size)

� Overall backup/restore performance can increase or decrease; depending
on whether CPU or media I/O is a bottleneck

Example:

db2 backup database DS2 to /home/db2inst1/backups compress

IBM DB2 9.7 Academic Workshop 238 of 335

 15 © 2010 IBM Corporation

Information Management

Automatic Database Backup

� Simplifies database backup management tasks for the DBA
by always ensuring that a recent full backup of the database
is performed as needed

� To configure automatic backup

�Graphical user interface tools

� Configure Automatic Maintenance
wizard

�Command line interface

� auto_db_backup

� auto_maint

�Stored procedure

� AUTOMAINT_SET_POLICY system stored procedure

 16 © 2010 IBM Corporation

Information Management

Optimizing Backup Performance

� DB2 automatically configures these parameters for performance
� Parallelism

� Number of table spaces backed up in parallel

� num_buffers

� Number of buffers used

� Use at least twice as many buffers as backup targets (or
sessions) to ensure that the backup target devices do not have to
wait for data.

� Buffer
� Backup buffer size

� Allocate more memory to backup utility by increasing utility heap size
(UTIL_HEAP_SZ) configuration parameter.

� Backup subset of data where possible:

� Table space backups

� Incremental backups

� Use multiple target devices

IBM DB2 9.7 Academic Workshop 239 of 335

 17 © 2010 IBM Corporation

Information Management

Database Recovery

� Recovery is the rebuilding of a database or
table space after a problem such as media
or storage failure, power interruption, or
application failure.

Types of Recovery

�Crash or restart recovery
� Protects the database from being left inconsistent (power

failure)
�Version recovery

� Restores a snapshot of the database
�Roll forward recovery

� Extends version recovery by using full database and table
space backup in conjunction with the database log files

� Crash recovery and version recovery are enabled in DB2 by default

 18 © 2010 IBM Corporation

Information Management

DB2 Restore Utility

� Restore utility is the complement of backup utility

� Restores database or table space from a previously taken
backup

� TAKEN AT - Specify the time stamp of the database backup
image. Backup image timestamp is displayed after
successful completion of a backup

� Without prompting � Overrides any warnings.

 Example:

 SAMPLE.0.DB2INST.NODE0000.CATN0000.20080718131210.001

 RESTORE DATABASE dbalias FROM <db_path> TAKEN AT 20080718131210

IBM DB2 9.7 Academic Workshop 240 of 335

 19 © 2010 IBM Corporation

Information Management

Table space Restore Operation

� Restored table space is in Roll Forward Pending state and can be either
rolled forward to End of Logs or a Point In Time.

� In case of Point in Time roll forward, table space must be rolled forward to
at least the minimum Point in Time

� Minimum recovery time can be checked using

� db2 list tablespaces show detail

� User table space must be in line with catalog table space
� e.g if catalog indicates table T1 exists in table space TSP1, table T1 must

exist in the TSP1 table space, otherwise database becomes inconsistent

� Every time there is a DDL changed, minimum recovery time for the table
space is revised to indicate the last DDL change.

� Recommended to take a table space backup after a table space has been
restore to a point in time.

� Transactions that came after the point in time are lost, therefore take a
table space backup as new point of reference for future recoveries.

 20 © 2010 IBM Corporation

Information Management

Incremental Restore

� Restore a database with incremental backup images

� AUTOMATIC (recomended) - All required backup images will be applied
automatically by restore utility

� MANUAL � User applies the required backups manually
� db2ckrst can provide the sequence for applying backups

� ABORT - aborts an in-progress manual cumulative restore

� RESTORE DATABASE sample INCREMENTAL AUTOMATIC FROM /db2backup/dir1;

� ROLLFORWARD DATABASE sample TO END OF LOGS AND COMPLETE;

IBM DB2 9.7 Academic Workshop 241 of 335

© 2010 IBM Corporation

Information Management

Information Management Ecosystem Partnerships
IBM Canada Lab

Summer/Fall 2010Questions?

E-mail: imschool@us.ibm.com
Subject: �DB2 Academic Workshop�

IBM DB2 9.7 Academic Workshop 242 of 335

1

IBM DB2® 9.7

Backup and
Recovery
Hands-On Lab

I

Information Management Ecosystem Partnerships

IBM Canada Lab

IBM DB2 9.7 Academic Workshop 243 of 335

2

Contents

CONTENTS... 2
1. INTRODUCTION.. 3
2. BASIC SETUP ... 3

2.1 Environment Setup Requirements.. 3
2.2 Preparation Steps... 3

3. DB2 LOGGING .. 4
3.1 Logging Parameters ... 4

3.1.1 LOGFILSIZ... 5
3.1.2 LOGPRIMARY AND LOGSECOND... 5
3.1.3 LOGBUFSZ.. 6

3.2 Types of Logging .. 6
3.2.1 CIRCULAR LOGGING.. 6
3.2.2 ARCHIVAL LOGGING.. 6

4. RECOVERY SCENARIO ... 8
4.1 Scenario 1 - Entire database is accidentally dropped or becomes
corrupted .. 8
4.2 Scenario 2 - Database Roll forward to a Point in Time............................. 9
4.3 Scenario 3 – Incremental Backup and Restore 11

4.3.1 INCREMENTAL BACKUP.. 11
4.3.2 INCREMENTAL RESTORE ... 13

IBM DB2 9.7 Academic Workshop 244 of 335

3

1. Introduction

Various situations may threaten the integrity of the database including system outage,
hardware failure, transaction failure, and disaster. With DB2’s backup and recovery, it
prevents you from losing data.

By the end of this lab, you will be able to:

 Perform a full backup and restore
 Restore a database to a point in time
 Perform an incremental backup and restore

2. Basic Setup

2.1 Environment Setup Requirements
To complete this lab you will need the following:

• DB2 Academic Workshop VMware® image
• VMware Player 2.x or VMware Workstation 5.x or later

For help on how to obtain these components please follow the instructions specified in
VMware Basics and Introduction from module 1.

2.2 Preparation Steps

1. Start the VMware image. Once loaded and prompted for login credentials, use the
user “db2inst1” to provide DBADM authority:

User: db2inst1
Password: password

2. Type in the command “startx” to bring up the graphical environment.

3. Open a terminal window by right-clicking on the Desktop and choosing the
“Open Terminal” item:

4. If the Database Manager is not yet started, issue the following command:

db2start

IBM DB2 9.7 Academic Workshop 245 of 335

4

For executing this lab, you will need the DB2’s sample database created in its original
format.

Execute the commands below to drop (if it already exists) and recreate the SAMPLE
database:

db2 force applications all

db2 drop db sample

db2sampl

3. DB2 Logging

A transaction is a logical unit of work. Every transaction performed by DB2 is first written
to the log and is then performed against the data. DB2 relies on these log files for
backup and recovery.

Before we can go into the different types of DB2 logging, we first have to understand
some logging parameters.

3.1 Logging Parameters

To see the database configuration that is related to logging, run the following command:

db2 get db cfg for sample | grep LOG

IBM DB2 9.7 Academic Workshop 246 of 335

5

3.1.1 LOGFILSIZ

It is the size of each transactional log file measured in 4KB pages. The default size is
1000 pages or 4 MB, which implies that it can hold up to 4 MB of transactional data. You
can configure it to be larger if it is going to be a high-transaction OLTP type of
environment. In an OLTP environment, small-sized log files would fill up very quickly and
new log files would have to be created frequently.

3.1.2 LOGPRIMARY and LOGSECOND

LOGPRIMARY is the number of primary log files. At any given time, there might be
some uncommitted transactions in the database that make up the active log space.
Active log space refers to the total sum of log space taken up by uncommitted
transactions. By default it is 3; therefore if you have 3 log files worth of uncommitted
transactions, any new transactions would start utilizing the secondary log files.

LOGSECOND is the number of secondary log files. These are allocated only when a
transaction exhausts all the space configured for the primary log, to accommodate
spikes in transactional activity. Once the transactions using the secondary log files
commit or roll back, DB2 returns to using primary log. You can have this configured. By
default LOGSECOND is 2, meaning if primary log files filled up with uncommitted
transactions, 2 more log files will be allocated temporarily to handle the spike. If all the
primary and secondary log files have been used, then an error will be returned:

SQL0964C The transaction log for the database is full.

Set LOGPRIMARY to 5 and LOGSECOND to 3; issue the following command from the
terminal window:

db2 update database configuration for sample using LOGPRIMARY 5
db2 update database configuration for sample using LOGSECOND 3

A warning message may be returned:

SQL1363W One or more of the parameters submitted for immediate modification were
not changed dynamically. For these configuration parameters, all applications must
disconnect from this database before the changes become effective.

In order for the change of configuration to take effect, simply disconnect and reconnect
to it, since this is the only connection to the database at this moment.

db2 terminate
db2 connect to sample

IBM DB2 9.7 Academic Workshop 247 of 335

6

3.1.3 LOGBUFSZ

All log records are written in memory before getting flushed to disk. LOGBUFSZ
specifies the size of this area in memory. The default of 8 4KB pages is small for most
scenarios. This parameter is critical for OLTP performance. Set the LOGBUFSZ to 256,
which is a good starting number. In a real environment, take an OLTP workload and
benchmark with higher LOGBUFSZ to find the optimal value.

3.2 Types of Logging

DB2 databases support two different logging modes: Circular and Archival.

3.2.1 Circular Logging

This is DB2’s default logging technique for a newly created database. It uses primary
log files in rotation up to the number of log files indicated by the LOGPRIMARY
parameter. If a long-running transaction exhausts all the primary log files before
completing, the transaction spills over to the secondary log files. When the work is
committed, DB2 returns to the first log file and continues in a circular fashion.

Roll-forward recovery is not possible with this logging method because log files are not
kept as they are constantly being overwritten. Only crash recovery and version recovery
are available. If a database is using circular logging, the database can be backed up
only through an offline backup.

To enable circular logging, set both LOGARCHMETH1 and LOGARCHMETH2 database
configuration parameters to OFF.

3.2.2 Archival Logging

In archival logging, all log files are kept; they are never overwritten. To have online
backups and the ability to perform roll forward recovery, the database needs to be
enabled for archival logging.

To enable archival logging, you will need to specify the value of LOGARCHMETH1 to
something other than OFF. If both LOGARCHMETH1 and LOGARCHMETH2 have been
specified, then archive logs are archived twice.

Infinite logging is a variation of archival logging where LOGARCHMETH2 is set to -1.
With this type of logging, secondary log files are allocated until the unit of work commits.
Secondary log files are allocated until the unit of work commits or storage is exhausted
1. We will now change the logging method to archival logging and set the archival

location:

IBM DB2 9.7 Academic Workshop 248 of 335

7

mkdir /home/db2inst1/logarch
db2 update db cfg for sample using LOGARCHMETH1

disk:/home/db2inst1/logarch

2. Terminate the connection to the database and reconnect to the sample database:

db2 terminate
db2 connect to sample

However, when you try to reconnect to the sample database, you will receive the
following error:

SQL1116N A connection to or activation of database "SAMPLE" cannot be made
because of BACKUP PENDING. SQLSTATE=57019

This message is received because archival logging has just been enabled for this
database so it is put into backup pending state. Recall that once archival logging is
enabled for the database, roll forward recoveries can be performed. However, roll
forward recovery can only be performed once a backup image has been restored and
database is placed in Roll Forward Pending status. Therefore, a full database backup
must be made before the database can be used.

3. Create a directory to store the backup and take a full database backup by issuing the

following command:

mkdir /home/db2inst1/backups
db2 backup database sample to /home/db2inst1/backups

If no error has occurred, you will see a similar message as the following but with a
different timestamp:

Backup successful. The timestamp for this backup image is: 20100509163937

When a backup image is created, the timestamp at which the backup image is created is
returned in the format of yyyymmddhhmmss. This is useful information because the
Restore utility uses this timestamp to differentiate between multiple available backup
images.

Write down the timestamp returned by your backup command, it will be referred to as T1
in following exercises.
T1:

4. Try to connect to the database again. This time it should succeed.

db2 connect to sample

IBM DB2 9.7 Academic Workshop 249 of 335

8

4. Recovery Scenario

In this section of the lab, we will explore various scenarios in which DB2 Recovery utility
can be used to recover from failure.

4.1 Scenario 1 - Entire database is accidentally
dropped or becomes corrupted

If a database was accidentally dropped or is corrupted, you can recover the database by
restoring a full backup

In this example, we will restore from the offline backup image taken at the end of
Exercise 3.2.2. If you had not noted down the timestamp (T1) at which the backup was
taken, you can always check the Recovery history file to find the backup time stamp by
issuing the following command:

db2 list history backup all for database sample

The timestamp is indicated within the circle in the screenshot below:

IBM DB2 9.7 Academic Workshop 250 of 335

9

1. To simulate this scenario, disconnect and drop the database sample:

db2 force applications all
db2 drop database sample

If you try to connect to the sample database now, you will receive the following error

db2 connect to sample

SQL1013N Database alias name or database name "sample" could not
found. SQLSTATE=43705

2. To recover from this failure, you can restore a previously created full database

backup.

Restore the database backup image that was created earlier in the previous
exercise. You will need to substitute the timestamp T1 noted earlier into the
command:

db2 restore database sample from /home/db2inst1/backups taken at <T1>

without rolling forward

Note that there is the without rolling forward clause in the restore command. Since
restore is from an offline backup, it is not mandatory to do a roll forward after the restore.
This is useful when a roll forward is not needed and restore can finish in just one step.

After restore finishes, you should be able to connect to the sample database without
having to do a roll forward explicitly.

4.2 Scenario 2 - Database Roll forward to a Point in
Time

Roll forward is the process of applying transaction log files after a restore has been
performed. For example, the last backup was taken Sunday, and the database was lost
on the following Tuesday. Once the backup from Sunday is restored, transactions in log
files need to be applied in order to recover transactions that were executed after the
backup was taken. This is achieved by rolling forward to END OF LOGS.

There might be a situation where it is not desired to apply all the transactions. For
example, a large set of records are deleted from the database mistakenly by the user. In
such a case, in order to recover all the deleted records, rolling forward to a POINT IN
TIME before the deletions took place would be more appropriate.

1. To simulate this scenario, we will delete some rows from tables.

Before we began, check the number of rows in the original STAFF table within the
sample database:

IBM DB2 9.7 Academic Workshop 251 of 335

10

db2 connect to sample
db2 “select count(*) from staff”

The number of rows in the STAFF table should be 35.

Now run the following commands to delete some of the data from the STAFF table:

db2 “delete from staff where dept=10”

Check the count of the STAFF table after the delete statement:

db2 “select count(*) from staff”

There should now be 31 rows in the STAFF table.

2. We will run another delete statement on the EMPLOYEE table. However, imagine

that these rows were deleted accidentally.

Run the “date” command and note the timestamp before we “accidentally” issue a
delete statement.

date +%F-%H.%M.%S

This timestamp will be referred to as T2, write it down as a record as this is needed for
the point in time recovery:

T2:

Now check the number of rows in the original EMPLOYEE table:

db2 “select count(*) from employee”

The number of rows in the EMPLOYEE table should be 42.

Now we will accidentally delete some data from the EMPLOYEE table:

db2 “delete from employee where edlevel=12”

Check the count of the EMPLOYEE table after the delete statement:

db2 “select count(*) from employee”

There should now be 39 rows in the EMPLOYEE table.

3. The rows that you have just deleted from the EMPLOYEE table were not supposed

to be removed. If we restore the database to the last full backup, then the deletion of
rows to the STAFF table will also be undone. In this case, we can recover to the
point in time just before the delete statement was issued against the EMPLOYEE,
which in our case is T2.

IBM DB2 9.7 Academic Workshop 252 of 335

11

4. Restore the database to the last backup image which we have taken from exercise
3.2.2 at T1:

db2 restore database sample from /home/db2inst1/backups taken at <T1>

without prompting

5. Now that the database is restored, roll forward to a point in time before the delete on

table EMPLOYEE was issued which is T2.

db2 rollforward db sample to <T2> using local time

Note that the timestamp for roll forward has to be provided in this format: yyyy-mm-dd-
hh.mm.ss.

6. Lastly, take the database out of the roll forward pending status by executing:

db2 rollforward database sample stop

7. Connect to the sample database and check the number of rows of the STAFF table

and the EMPLOYEE table.

db2 connect to sample
db2 “select count(*) from staff”
db2 “select count(*) from employee”

You will notice that the number of rows returned from the STAFF table is 31 and the
number of rows in the EMPLOYEE table is 42.

The “accidentally” deleted rows from the EMPLOYEE table have been recovered by
performing a point in time recovery. Roll forward was done up to a time before the delete
statement was issued. The delete statement was issued after this point in time;
therefore, it was not replayed.

If an END OF LOGS roll forward was done in this case, it would have also replayed the
delete statement of the EMPLOYEE table, thereby deleting the rows again. The END OF
LOGS option is useful when the database has been lost, and a recovery is needed
through all available logs to ensure that all transactions have been recovered.

4.3 Scenario 3 – Incremental Backup and Restore

4.3.1 Incremental Backup

As database sizes grow larger, it can be quite costly to run full backups, both in terms of
storage for the backup images and time required to execute the backups. This is where
incremental backups come in. They allow the user to only backup the changes that have

IBM DB2 9.7 Academic Workshop 253 of 335

12

been made since the last backup, instead of having to backup the entire database every
time.

In order to use incremental backups, the database has to be enabled for it. This is done
by turning the TRACKMOD database configuration parameter on. When TRACKMOD is
turned on, the database keeps track of table spaces that have been modified. When an
incremental backup command is issued, it will skip the table spaces that have not been
modified since the last backup.

1. Turn the TRACKMOD database configuration parameter to ON:

db2 connect to sample
db2 update db cfg for sample using TRACKMOD ON

A warning message will be returned:

SQL1363W One or more of the parameters submitted for immediate modification were
not changed dynamically. For these configuration parameters, all applications must
disconnect from this database before the changes become effective.

2. In order for the change of configuration to take effect, reconnect to it.

db2 terminate
db2 connect to sample

3. Incremental backups require a full backup to act as a reference point for incremental

changes. Create a backup of the database using the online mode:

db2 backup database sample online to /home/db2inst1/backups

Write down the timestamp of this backup, it will be referred to as T3.

T3:

4. Make some changes to the STAFF table by decreasing the salary of everyone:

db2 connect to sample
db2 “update staff set salary=salary*0.9”

5. After the database has enabled incremental backups by modifying TRACKMOD to

ON and after creating a full backup of the database, an incremental backup can be
now taken to just include the changes made.

db2 backup db sample incremental to /home/db2inst1/backups

Note down the timestamp at which the incremental backup is created. This will be
referred to as T4.

T4:

IBM DB2 9.7 Academic Workshop 254 of 335

13

6. Compare the size of the full backup and the incremental backup images. At the
command prompt, run the following command to check the size:

ls –lrt /home/db2inst1/backups

The circle indicates the size of the last two backup images. Notice the size of the last
image (the incremental backup image) is much smaller than the image above it (the full
backup image). This is because the incremental image contains only the changes since
last full backup. Any table space that was not modified since the last full backup will not
be included in the incremental database backup.

4.3.2 Incremental Restore

When restoring from incremental backups, the right sequence of full, incremental and
incremental delta backups have to be applied. This can become very complex very
quickly in a real environment. For this reason, there is an AUTOMATIC option available
with the restore command such that DB2 figures out the right sequence for applying
backups and then applies them. There is also a MANUAL option available, but the
AUTOMATIC option is highly recommended.

The db2ckrst utility can be used to query the database history and generate a list of
backup image time stamps needed for an incremental restore.

db2ckrst –d sample –t <T4>

IBM DB2 9.7 Academic Workshop 255 of 335

14

This output shows that last incremental image will be read first to get the control and
header information only. Then the database will be restored from the full backup image.
Lastly, the incremental image will be read again, this time applying the data in the image.

Issue the following command from the command line to restore SAMPLE database to
the last incremental backup image:

db2 “restore db sample incremental automatic from

/home/db2inst1/backups taken at <T4>“

IBM DB2 9.7 Academic Workshop 256 of 335

© 2010 IBM Corporation

Information Management

Information Management Ecosystem Partnerships
IBM Canada Lab

Summer/Fall 2010

DB2® pureXML

 2 © 2010 IBM Corporation

Information Management

Agenda

� Overview of XML

� pureXML in DB2

� XML Data Movement in DB2

� XQuery and SQL/XML

� XML Indexes in DB2

� Application Development

IBM DB2 9.7 Academic Workshop 257 of 335

 3 © 2010 IBM Corporation

Information Management

What is XML?

� eXtensible Markup Language
�XML is a language designed

to describe data

� A hierarchical data model

<book>

<authors>

<author id="47">John Doe</author>

<author id="58">Peter Pan</author>

</authors>

<title>Database systems</title>

</book>

Flexible
Describes

itself
Easy to

share

Easy to
extend

Plataform
Independent

Vendor
Independent

Characteristics of XML

 4 © 2010 IBM Corporation

Information Management

Who Uses XML?

Banking
IFX, OFX, SWIFT, SPARCS,
MISMO +++

Financial Markets
FIX Protocol, FIXML, MDDL,
RIXML, FpML +++

Insurance
ACORD
XML for P&C, Life +++

Chemical & Petroleum
Chemical eStandards
CyberSecurity
PDX Standard+++

Healthcare
HL7, DICOM,
SNOMED, LOINC,
SCRIPT +++

Life Sciences
MIAME, MAGE,
LSID, HL7, DICOM,
CDIS, LAB, ADaM +++

Retail
IXRetail, UCCNET, EAN-UCC
ePC Network +++

Electronics
PIPs, RNIF, Business Directory,
Open Access Standards +++

Automotive
ebXML,
other B2B Stds.

Telecommunications
eTOM, NGOSS, etc.
Parlay Specification +++

Energy & Utilities
IEC Working Group 14
Multiple Standards
CIM, MultispeakCross Industry

PDES/STEPml
SMPI Standards
RFID, DOD XML+++

IBM DB2 9.7 Academic Workshop 258 of 335

 5 © 2010 IBM Corporation

Information Management

XML Document Components

<book>

<authors>

<author id=�47�>John Doe</author>

<author id=�58�>Peter Pan</author>

</authors>

<title>Database systems</title>

<price>29</price>

<keywords>

<keyword>SQL</keyword>

<keyword>relational</keyword>

</keywords>

</book>

Element

Attribute

Text node (Data)

Root element

 6 © 2010 IBM Corporation

Information Management

The XML Data Model: Node Types

<book>

<authors>

<author id=�47�>John Doe</author>

<author id=�58�>Peter Pan</author>

</authors>

<title>Database systems</title>

<price>29</price>

<keywords>

<keyword>SQL</keyword>

<keyword>relational</keyword>

</keywords>

</book>

book

authors keywords

id=47 id=58

author

SQL relationalPeter PanJohn Doe

29Database
systems

title price

author keyword keyword

Node Types
Document node

Element nodes

Attribute nodes

Text nodes

IBM DB2 9.7 Academic Workshop 259 of 335

 7 © 2010 IBM Corporation

Information Management

Well-Formed Versus Valid XML Documents

� A well-formed XML document is a document that follows
basic rules:

1) It must have one and only one root element
2) Each element begins with a start tag and ends with an end tag
3) An element can contain other elements, attributes, or text nodes
4) Attribute values must be enclosed in double quotes. Text nodes,

on the other hand, should not.

(i.e. it can be parsed by an XML parser without error)

� A valid XML document is BOTH:
1) A well-formed XML document
2) A document compliant with the rules defined in an XML schema

document or a Document Type Definition (DTD) document.

XML Parsers can optionally perform �validation�

 8 © 2010 IBM Corporation

Information Management

DB2 pureXML
� Relational columns are stored in relational format (tables)

� Native XML Storage
� XML documents are stored in their original hierarchical format
� No XML parsing for query evaluation!

� XML capabilities in all DB2 components

� XML data can be manipulated using SQL or XQuery

DB2 Database

SQL/XML

XQuery

Client Apps

IBM DB2 9.7 Academic Workshop 260 of 335

 9 © 2010 IBM Corporation

Information Management

Native XML Storage

� Documents are stored in parsed representation

<customerInfo>
<cusotmer id ="1">

<name>Victor</name>
<sex>M</sex>
<phone type="work">739-1274</phone>

</customer>
<customer id ="2">

<name>April</name>
<sex>F</sex>
<phone type="home">983-2179</phone>

</customer>
</customerInfo>

customerInfo

customer customer

Id=�1� Id=�2�name sex phone name sex phone

type =
�work�

739-1274 type =
�home�

983-2179MVictor FApril

Serialization

XML Parsing
Document

Object
Model

 10 © 2010 IBM Corporation

Information Management

Relational Versus Hierarchical (XML) Model

Relational Hierarchical (XML)

Relational data is flat XML data is nested.

Relational model is set oriented.
Sets are unordered.

XML retrieves sequences (the order
matters)

Relational data is structured. XML data is semi-structured.

Relational data has a strong schema,
unlikely to change often.

XML data has a flexible schema,
appropriate for constant changes.

Use NULL for an unknown state. NULLS don't exist. Don't add any
XML element.

Based on the ANSI/ISO industry
standards.

Based on the W3C industry
standards.

IBM DB2 9.7 Academic Workshop 261 of 335

 11 © 2010 IBM Corporation

Information Management

PureXML Storage in DB2: XML Data Type

customerInfo

customer customer

Id=�1� Id=�2�name sex phone name sex phone

type =
�work�

739-1274 type =
�home�

983-2179MVictor FApril

DB2 storage

deptID ... custDoc

A001 ...

...

CREATE TABLE dept (deptID VARCHAR(30), ..., custDoc XML)

 12 © 2010 IBM Corporation

Information Management

XML Node Storage Layout

� Node hierarchy of an XML document is stored on DB2 pages

� Documents that don't fit on 1 page are split into pages/regions

� No architectural limit for size of XML documents

� NodeIDs are used to identify individual nodes

1

1.1
1.2 1.3

1.2.1.1.5.3

1.3.2

1.3.1.3

Document split into 3
regions, stored on 3
pages..

IBM DB2 9.7 Academic Workshop 262 of 335

 13 © 2010 IBM Corporation

Information Management

XML Data: As Trees on DB2 Pages

...

pagepage page
table space

All benefits of DB2 tablespaces
�Buffered in Buffer Pools
�Prefetching
�Logging & Recovery

 14 © 2010 IBM Corporation

Information Management

XML Storage: Internal Objects and Their Relationship

deptID ... custDoc

A001 ...

A002 ...

... ...

Region
Index

INX Object

XDA Object

DAT Object

Like LOBs, XML
data is stored
separately from
the base table
(unless inlined)

IBM DB2 9.7 Academic Workshop 263 of 335

 15 © 2010 IBM Corporation

Information Management

How to Get Data In?

� Implicit XML parsing:
�Inserting data of XML data type into a column

� Explicit XMLPARSE
�Transform XML value from serialized (text) form into internal

representation.
�Tell system how to treat whitespaces (strip/preserve)

� Default is 'Strip WHITESPACE'

INSERT INTO dept VALUES
(�PR27�, �, �<dept>�<emp>�</emp>�</dept>�)

INSERT INTO dept VALUES (�PR27�, xmlparse(document '<a>...'));
INSERT INTO dept VALUES (�PR27�,

 xmlparse(document '<a>...� preserve whitespace));

 16 © 2010 IBM Corporation

Information Management

Deleting XML Data

� DELETE
�Will delete every XML document for a row

�You can also delete based on the XML content

� Note: Setting an XML column to NULL deletes the XML
document

DELETE FROM dept WHERE deptID=�A001�

DELETE FROM dept WHERE
 XMLEXISTS ('$d//phone[type="Home"]'
 passing INFO as "d")

UPDATE dept SET custDoc = NULL WHERE deptID='A001�

IBM DB2 9.7 Academic Workshop 264 of 335

 17 © 2010 IBM Corporation

Information Management

Import

import from /data/dept.del of del
XML from /data/xmlfiles
insert into dept

1000,"<XDS FIL=�C1.xml' />"

1001,"<XDS FIL=�C2.xml' />"

1002,"<XDS FIL=�C3.xml' />"

1003,"<XDS FIL=�C4.xml' />"

1004,"<XDS FIL=�C5.xml' />"

/data/xmlfiles/C1.xml

/data/xmlfiles/C2.xml

/data/xmlfiles/C3.xml

/data/xmlfiles/C4.xml

/data/xmlfiles/C5.xml

1000 <dept><employee><name>John Doe</name>
<address><street>555 Bailey Ave</street><city>�</city><zip>95141</zip>
</address>�</employee></dept>

1001 <dept><employee><name>Kathy Smith</name> �

1002 <dept><employee><name>Jim Noodle �.

/data/dept.del

/data/xmlfiles

dept

DEL file to import

Directory that includes
the XML files that are
referenced in the DEL file

 18 © 2010 IBM Corporation

Information Management

Export
EXPORT TO /data/dept.del of DEL
XML TO /data/xmlfiles
XMLFILE deptdoc

MODIFIED BY XMLINSEPFILES

SELECT * FROM dept

1000 <dept><employee><name>John Doe</name>
<address><street>555 Bailey Ave</street><city>�</city><zip>95141</zip>
</address>�</employee></dept>

1001 <dept><employee><name>Kathy Smith</name> �

1002 <dept><employee><name>Jim Noodle �.

dept

1000,"<XDS FIL=�C1.xml' />"

1001,"<XDS FIL=�C2.xml' />"

1002,"<XDS FIL=�C3.xml' />"

1003,"<XDS FIL=�C4.xml' />"

1004,"<XDS FIL=�C5.xml' />"

/data/xmlfiles/C1.xml

/data/xmlfiles/C2.xml

/data/xmlfiles/C3.xml

/data/xmlfiles/C4.xml

/data/xmlfiles/C5.xml

/data/dept.del /data/xmlfiles

DEL file to output

Directory to place XML files

Base name for exported XML files

Store each XML document in separate file
(Optionally: Concatenate all XML
documents in one large file.)

What to export

IBM DB2 9.7 Academic Workshop 265 of 335

 19 © 2010 IBM Corporation

Information Management

SQL/XML and XQuery

� DB2 Supports two query languages:
�XQuery
�SQL/XML

� XPath
�Cornerstone for both XQuery and SQL/XML standard
�Provides ability to navigate within XML documents

� XQuery
�Two important functions to access the database:

� db2-fn:sqlquery
� db2-fn:xmlcolumn

�Results returned as a sequence of items

� SQL/XML
�Provides functions to work with both XML and relation data at the

same time.

 20 © 2010 IBM Corporation

Information Management

XPath

customerInfo

<customerInfo>
<cusotmer id ="1">

<name>Victor</name>
<sex>M</sex>
<phone type="work">739-1274</phone>

</customer>
<customer id ="2">

<name>April</name>
<sex>F</sex>
<phone type="home">983-2179</phone>

</customer>
</customerInfo>

customer customer

Id=�1� Id=�2�name sex phone name sex phone

type =
�work�

739-1274 type =
�home�

983-2179MVictor FApril

Path Table

/

/customerInfo

/customerInfo/customer/@id

/customerInfo/customer/name

/customerInfo/customer/sex

/customerInfo/customer/phone

/customerInfo/customer/phone/@type

Parse

IBM DB2 9.7 Academic Workshop 266 of 335

 21 © 2010 IBM Corporation

Information Management

Some Common XPath Expressions

/ Selects from the root node.

// Selects nodes in the document from the
current node that match the select.

text() Specifies the text node under an element.

@ Specifies an attribute.

* Matches any element node.

@* Matches any attribute node.

[�] Predicates

<customerInfo>
<cusotmer id ="1">

<name>Victor</name>
<sex>M</sex>
<phone type="work">739-1274</phone>

</customer>
<customer id ="2">

<name>April</name>
<sex>F</sex>
<phone type="home">983-2179</phone>

</customer>
</customerInfo>

XPath Expression Result Description Result

/customerInfo/*/phone/text() Selects the text node under the
phone element of customerInfo

739-1274
983-2179

/customerInfo//phone/@type Selects the type attribute under the
phone element of customerInfo

work
home

/customerInfo/customer[1]/phone/text() Selects the phone element text
node under the first customer of
customerInfo

739-1274

/customerInfo//phone[@type='home'] Selects all phone elements under
cusomterInfo which has an
attribute named type with a value
of 'home'

<phone
type=�home�>
983-2179
</phone>

 22 © 2010 IBM Corporation

Information Management

Introduction to XQuery

� Unlike relational data (which is predictable and has a regular
structure), XML data is:

�Often unpredictable

�Highly variable

�Sparse

�Self-describing

� You may need XML queries to perform the following operations:

�Search XML data for objects that are at unknown levels of the
hierarchy

�Perform structural transformations on the data

�Return results that have mixed types

IBM DB2 9.7 Academic Workshop 267 of 335

 23 © 2010 IBM Corporation

Information Management

DB2 XQuery Functions

� To obtain XML data from a DB2 database with XQuery

�db2-fn:xmlcolumn (xml-column-name)

� Input argument is a string literal that identifies an XML column in a
table, case sensitive

xquery
 db2-fn:xmlcolumn(�CUSTOMER.INFO�)/customerinfo

� Retrieves an entire XML column as a sequence of XML values

�db2-fn:sqlquery (full-select-sql-statement)

� Input argument is interpreted as an SQL statement and parsed by
the SQL parser

� SQL statement needs to return a single XML column

xquery
 db2-fn:sqlquery(�SELECT INFO
 FROM CUSTOMER WHERE CID=6�)/customerinfo

� Returns an XML sequence that results from the full select

 24 © 2010 IBM Corporation

Information Management

XQuery: Retrieving XML Data From a Column

� db2-fn:xmlcolumn
�Retrieve all XML documents from an XML column, then process

them with an XQuery expression.

XMLCUSTOMER

CID INFO

1001

1002

1003

xquery
 db2-fn:xmlcolumn("XMLCUSTOMER.INFO");

xquery
 db2-fn:xmlcolumn("XMLCUSTOMER.INFO")/customerinfo/name;

name

� �

name

� �

IBM DB2 9.7 Academic Workshop 268 of 335

 25 © 2010 IBM Corporation

Information Management

XQuery: Retrieving XML Based on a SQL Query

� db2-fn:sqlquery
�Retrieve and XML document using SQL, then process it with an

XQuery expression
�Allows filtering based on relational data

XMLCUSTOMER

CID INFO

1001

1002

1003

xquery
 db2-fn:sqlquery(
 "SELECT INFO
 FROM XMLCUSTOMER
 WHERE CID=1001");

xquery
 db2-fn:sqlquery("SELECT INFO FROM

XMLCUSTOMER
 WHERE CID=1001")/customerinfo/name;

name

� �

 26 © 2010 IBM Corporation

Information Management

SQL/XML Functions

� XQuery can be invoked from SQL

�XMLQUERY()

�XMLTABLE()

�XMLEXISTS()

� By executing XQuery expressions from within the SQL
context, you can:

�Operate on parts of stored XML documents instead of entire XML
documents

�Enable XML data to participate in SQL queries

�Operate on both relational and XML data

�Apply further SQL processing to the returned XML values

IBM DB2 9.7 Academic Workshop 269 of 335

 27 © 2010 IBM Corporation

Information Management

SQL/XQuery: XML Data for SQL Developers

� XMLQUERY

� Scalar function, applied once to each qualifying document

� Evaluates an XPath (or XQuery) expression

� Input arguments can be passed into the XQuery
(e.g. column names, constants, parameter markers)

� Returns a sequence of 0, 1 or multiple items from each document

SELECT
XMLQUERY(�$i/customerinfo/name�
PASSING INFO AS �i�)

FROM
CUSTOMER

XMLCUSTOMER

CID INFO

1001

1002

1003

1

<name>...</name>

<name>...</name>

...

 28 © 2010 IBM Corporation

Information Management

SQL/XQuery: XML Data for SQL Developers

� SELECT iterates over all rows in the customer table

� For each row, "XMLQUERY" is invoked
� The "passing" clause binds the variable "$i" to the value of

the �INFO" column of the current row
� The XQuery expression is executed
� XMLQUERY returns the result of the XQuery expression,

a value of type XML

SELECT
XMLQUERY(�$i/customerinfo/name�
 PASSING INFO AS �i�)

FROM CUSTOMER

IBM DB2 9.7 Academic Workshop 270 of 335

 29 © 2010 IBM Corporation

Information Management

SQL/XQuery: XML Data for SQL Developers

� XMLTABLE
�Creates a temporary SQL table using XML data

XMLCUSTOMER

CID INFO

1001

1002

1003

SELECT T.*

FROM XMLTABLE(
 'db2-fn:xmlcolumn("XMLCUSTOMER.INFO")/customerinfo'

 COLUMNS "NAME" VARCHAR (20) PATH 'name',
 "STREET" VARCHAR (20) PATH 'addr/street',

 "CITY" VARCHAR (20) PATH 'addr/city'

) AS T

<customerinfo>

 <name>John Smith</name>
 <addr country=�Canada">

 <street>Fourth</street>
 <city>Calgary</city>
 <prov-state>Alberta</prov-

state>

 <pcode-zip>M1T 2A9</pcode-zip>

 </addr>

 <phone type="work">

 963-289-4136

 </phone>

</customerinfo>

NAME STREET CITY

Amir Malik Young Toronto

John Smith Fourth Calgary

� � �

 30 © 2010 IBM Corporation

Information Management

SQL/XQuery: XML Data for SQL Developers

� XMLEXISTS
�Predicate that tests if an XQuery expression returns a sequence

XMLCUSTOMER

CID INFO

1001

1002

1003

SELECT CID, INFO

FROM XMLCUSTOMER WHERE

XMLEXISTS(
 '$d/customerinfo[name = "John Smith"]'

 passing INFO as "d")

CID INFO

1003

<customerinfo>

 <name>John Smith</name>
 <addr country=�Canada">

 <street>Fourth</street>

 <city>Calgary</city>

 <prov-state>Alberta</prov-

state>

 <pcode-zip>M1T 2A9</pcode-zip>

 </addr>

 <phone type="work">

 963-289-4136

 </phone>

</customerinfo>

IBM DB2 9.7 Academic Workshop 271 of 335

 31 © 2010 IBM Corporation

Information Management

XML Indexes

� An index over XML data can be used to improve the
efficiency of queries on XML documents.

�Index entries will provide access to nodes within the
document by creating index keys based on XML pattern
expressions.

� Like relational data they may have some cost.
� Performance for INSERT, UPDATE and DELETE
� Space needed to store the indexes

Regular Indexes Indexes for XML

Based on columns
Based on XML pattern
expressions

1 or more columns Only 1 XML column

1 row � 1 index key

All nodes that satisfy
the XML pattern:
1 document � 0, 1 or
more index keys

B-Tree B-Tree

CREATE INDEX IDX1 ON
TB1(XMLDOC)

 GENERATE KEY USING XMLPATTERN
�/company/emp/salary�
AS SQL DOUBLE;

CREATE INDEX IDX2 ON
TB1(XMLDOC)

 GENERATE KEY USING XMLPATTERN
�//@id� AS SQL VARCHAR(20);

 32 © 2010 IBM Corporation

Information Management

XML Indexes: Under the Covers

� XML Index contains
Path/Value pairs

� Path encoded as
PathID

� docID points to
region containing
doc root node

� Direct sub-doc
level access pagepage page

XDA

Regions
Index

XML
Values Index

PathID, Value, DocID, NodeID,...,RID

Integer char xml

... ...

(PathID, keyvalue) � (DocID, NodeID, RowID)

IBM DB2 9.7 Academic Workshop 272 of 335

 33 © 2010 IBM Corporation

Information Management

Development Support for XML Data

C or C++

COBOL

C# and
Visual Basic

PHP

Ruby

SQL
Procedures

Java

Perl

pureXML

 34 © 2010 IBM Corporation

Information Management

XML � Conclusion

� Native XML hierarchical storage
�No shredding, no CLOBs, no BLOBs required
�Optimized for XPATH and XQuery (LUW Only) processing

� High performance
�Superior indexing technology
�No parsing of XML data at query runtime

� Fully integrated XML and relational processing
�Seamlessly query various types of data at once
�No internal translation of XQuery into SQL

IBM DB2 9.7 Academic Workshop 273 of 335

© 2010 IBM Corporation

Information Management

Information Management Ecosystem Partnerships
IBM Canada Lab

Summer/Fall 2010Questions?

E-mail: imschool@us.ibm.com
Subject: �DB2 Academic Workshop�

IBM DB2 9.7 Academic Workshop 274 of 335

IBM DB2® 9.7

DB2 pureXML -
Storing XML Data
Made Easy
Hands-On Lab

I

Information Management Ecosystem Partnerships

IBM Canada Lab

IBM DB2 9.7 Academic Workshop 275 of 335

2

Contents

1. XML BASICS AND INTRODUCTION.. 3

2. SETUP AND CREATION OF XML TABLES... 3

2.1 ENVIRONMENT SETUP REQUIREMENTS ... 3
2.2 LOGIN TO THE VIRTUAL MACHINE.. 3
2.3 START DB2 SERVER AND ADMINISTRATION SERVER.................................... 4

3. DATABASE CREATION AND CONTROL CENTER.................................... 4

4. XQUERY .. 6

4.1 USING XML QUERIES .. 6

5. SQL/XML ... 8

6. XMLTABLE FUNCTION .. 9

SUGGESTED READING .. 10

IBM DB2 9.7 Academic Workshop 276 of 335

3

1. XML Basics and Introduction

It is sometimes desirable for users accustomed to SQL to use or extend SQL statements
to query XML data. Many existing relational applications are augmented with XML data.
Therefore, it is not uncommon to extend existing SQL for XML capabilities. Since XML
has been a data type since DB2 9, SQL/XML functions makes it much easier for queries
of XML with relational data. SQL/XML is also useful since it allows us to retrieve and
transform relational data into XML format, producing a single column of XML data type
that serves as input to XQuery. As we will see throughout the lab, XQuery provides a
way to extract and manipulate data from XML documents or other XML structured data
sources.

Since the introduction of pureXML technology in DB2 9, many users have already
learned how to manage XML data with DB2. This lab refreshes some simple SQL/XML
and XQuery functionality and concentrates on some advanced SQL/XML functionality as
well as the new transform function from the XQuery Update Facility.

This lab works on the DB2 sample database, allowing these tasks to be completed from
any machine.

2. Setup and Creation of XML Tables

2.1 Environment Setup Requirements
To complete this lab you will need the following:

1. DB2 Academic Workshop VMware® image
2. VMware Player 2.x or VMware Workstation 5.x or later

For help on how to obtain these components please follow the instructions specified in
the VMware Basics and Introduction module.

2.2 Login to the Virtual Machine
1. Login to the VMware virtual machine using the following information:

User: db2inst1
Password: password

2. In the command window enter startx to bring up the graphical environment.

IBM DB2 9.7 Academic Workshop 277 of 335

4

3. Open a terminal window by right-clicking on the Desktop area and choosing
the Open Terminal item.

2.3 Start DB2 Server and Administration Server

1. Start up DB2 Server and Administration Server by typing the following
commands in the terminal window in order:

db2start
su – dasusr1
db2admin start
exit

3. Database Creation and Control Center

1. Open a terminal window by right-clicking on the Desktop area and select the

Open Terminal item.

2. Execute the command below to create a sample database named “purexml”
that will be populated with XML data.

db2sampl -name purexml –xml

3. We will use the Control Center to work with the PUREXML database. Start the
DB2 Control Center by typing the following in the command window:

db2cc

4. In the Control Center View, select the “Advanced” display mode to have
access to all the options. Then click “OK” to continue.

IBM DB2 9.7 Academic Workshop 278 of 335

5

5. A screen similar to the following should display:

6. Open the Command Editor by clicking in the icon illustrated below to interact
with the database.

7. Connect to the PUREXML database created earlier by entering the following
command within the newly opened Command Editor and pressing the
button to execute this command:

connect to purexml;

IBM DB2 9.7 Academic Workshop 279 of 335

6

8. Clear the results output by this command by right-clicking on the bottom panel
and selecting the “Clear Results” option.

4. XQuery

XQuery is used for querying XML data in the same manner as SQL is used for querying
traditional relational data within databases. As we will see in the steps below, this is
achieved by allowing XQuery to use XPath expression syntax to address specific parts
of an XML document.

4.1 Using XML Queries

We are going to start by querying an XML document that contains a list of
customers with information, such as name, address, phone number, etc.

Note: All of the commands below should be placed on a single line as one query.

1. Enter the following query within the Command Editor window and click to

execute it and retrieve the results:

XQuery db2-fn:xmlcolumn("CUSTOMER.INFO");

You probably noticed that the function xmlcolumn returns the complete XML
document. If we want to retrieve specific information within the XML documents
we can use an XPath expression. Additionally, XPath allows us to specify
predicates within square brackets, in order to filter the results of your query.

2. In XPath, there is a special predicate called the positional predicate that returns

the node from a specified position for a given XML document. For example, the
XQuery below has an XPath expression containing the positional predicate
([1]) and always returns the first phone number from every XML document
(i.e. the first phone number of every customer). You may enter the query below
in the Command Editor window and execute the query to see the results.

xquery db2-fn:xmlcolumn("CUSTOMER.INFO")

/*:customerinfo/*:phone[1]

3. We can query for the details of customers who live in Toronto by entering the

following XQuery into the Command Editor window and executing the query to
see the results:

xquery db2-fn:xmlcolumn('CUSTOMER.INFO')/customerinfo[addr

/city ='Toronto'];

IBM DB2 9.7 Academic Workshop 280 of 335

7

4. We can write an XPath expression that fetches the assistant name (without
tags) of the customer whose Cid is greater than 1003 and belongs to Canada
with the following:

xquery db2-fn:xmlcolumn("CUSTOMER.INFO")/*:customerinfo

[@Cid > 1003]/*:addr[@country="Canada"]/../*:assistant
/*:name/text()

5. Now retrieve the names of customers that have a “work” phone number of

“905-555-7258” as follows:

xquery db2-fn:xmlcolumn('CUSTOMER.INFO')/
customerinfo/phone[@type='work' and text()='905-555-
7258']/../name

6. Then we can retrieve the cities where the country is “Canada” using the
following query:

xquery db2-

fn:xmlcolumn('CUSTOMER.INFO')//addr[@country="Canada"]/city

7. So far we have seen how to fetch individual element/attribute values from an

XML document. XQuery further allows construction of XML documents during
querying. Now, we will write an XQuery that returns a single element
<ShippedItems> containing the names of all items from orders that have been
shipped:

xquery <ShippedItems>
 {db2-fn:xmlcolumn("PURCHASEORDER.PORDER")
 /*:PurchaseOrder[@Status="Shipped"]/*:item/*:name}
 </ShippedItems>

8. Apart from constructing XML fragments on the fly, XQuery also allows nested
loop operations. The XQuery expression shown below returns the name and
quantity of all items from the purchase orders whose status is shipped (You
may use a second “for” clause to iterate over the quantity of items):

xquery for $po in

db2-fn:xmlcolumn("PURCHASEORDER.PORDER")/*:PurchaseOrder
for $quantity in $po/*:item/*:quantity
where $po/@Status="Shipped"
return ($po/*:item/*:name, $quantity)

IBM DB2 9.7 Academic Workshop 281 of 335

8

5. SQL/XML

Apart from supporting XQuery, DB2 also provides a number of built in SQL/XML
functions that can transform XML data into relational and vice versa. Some of the
SQL/XML functions can also be used for parsing, serializing and casting XML data type
into relational types.

We can now look at a couple of SQL/XML functions such as XMLQUERY, XMLEXISTS
that are used to fetch XML nodes that satisfy a given predicate.

1. The following SELECT statement returns the customer IDs (CID) of only those
customers who have an assistant:

select CID from CUSTOMER where XMLEXISTS

('$d/customerinfo/assistant' passing INFO as "d")

Here, only the CID is returned for the documents containing an assistant
element.

2. The following SELECT statement returns all the customers whose address
country is “Canada” and whose city is “Toronto”:

select XMLQUERY('$d/*:customerinfo/*:name' passing INFO

as "d") from CUSTOMER where XMLEXISTS
('$x/*:customerinfo/*:addr[@country ="Canada" and
*:city="Toronto"]' passing INFO as "x");

3. We will now construct an XML document with a <PurchaseOrder> element tag

and 4 children element tags (poid, status, custid and orderdate). The values for
the document can be obtained from the PURCHASEORDER table where the
POID is 5001.

select XMLELEMENT (NAME "PurchaseOrder",

XMLELEMENT (NAME "poid", POID),
XMLELEMENT (NAME "status", STATUS),
XMLELEMENT (NAME "custid", CUSTID),
XMLELEMENT (NAME "orderdate", ORDERDATE))
from PURCHASEORDER where POID = 5001

4. The SQL/XML function XMLAGG aggregates certain values together into one

group. The following SELECT statement returns an XML fragment with parent
element <Orders> containing all the POIDs from table PURCHASEORDER as
children:

select XMLELEMENT (NAME "Orders",

XMLAGG (XMLELEMENT (NAME "poid", POID))) from PURCHASEORDER

IBM DB2 9.7 Academic Workshop 282 of 335

9

5. The XMLAGG function is commonly used with the GROUP BY clause of the
SELECT statement as follows:

select XMLELEMENT (NAME "Orders",

XMLATTRIBUTES (STATUS as "status"),
XMLAGG (XMLELEMENT (NAME "poid", POID)))
from PURCHASEORDER group by STATUS

The above SELECT statement groups the result by the status of purchase
orders which helps us notice that there are duplicate rows.

We are also able to construct new namespaces within XML documents using
the XMLNAMESPACES function.

6. For example, the following query returns a new element node <allProducts>

with a namespace “http://posample.org”, and children element(s) <item>
containing the name from the PRODUCT table

select XMLELEMENT (NAME "allProducs",

XMLNAMESPACES (DEFAULT 'http://posample.org'),
XMLAGG (XMLELEMENT (NAME "item", NAME))) from PRODUCT

6. XMLTABLE function

The XMLTABLE function is one of the most commonly used SQL/XML function since it
helps generate a relational table from XML data. This function is used to help create
views for XML data. This is useful when certain portions of the XML documents need to
be exposed as relational data. For example, this helps the report designer write queries
for relational views without worrying about the XML data model.

1. The following SELECT statement returns a relational table containing two

columns (NAME as varchar(30) and ADDRESS as varchar(65)) with all of the
elements of address concatenated as one single item:

select X.* from

XMLTABLE ('db2-fn:xmlcolumn ("CUSTOMER.INFO")/customerinfo'
COLUMNS name varchar(30) PATH 'name', address
varchar(65)PATH 'fn:string-join(addr/*," ")') as X;

The syntax of the XMLTABLE function is straightforward. It takes an XQuery or
XPath expression as input and populates the named relational columns with
values of the XPath expression and the PATH clause.

Note: Make sure that the resulting values from the path expressions always
yield atomic values to successfully cast the values into relational data types.

IBM DB2 9.7 Academic Workshop 283 of 335

10

For XPath expressions resulting in multiple values, these values can be stored
as part of an XML column in the relational table.

2. We will now retrieve table data containing columns storing the customer names

and an XML column containing an XML file with customer phone numbers:

select X.* from
XMLTABLE ('db2-fn:xmlcolumn("CUSTOMER.INFO")/customerinfo'
COLUMNS name varchar(30) PATH 'name',
phone xml PATH 'for $x in phone return $x') as X;

Please note that if there is more than one phone element in the same XML
document, then they will all appear in the same XML column value.

The XMLTABLE function can also be used to populate another relational table
by using the SELECT statement along with the INSERT statement

3. For example, we can use the SQL statements below to first create a table

named CUSTOMERDATA with the given schema:

create table CUSTOMERDATA (CID integer, NAME varchar(30),
CITY varchar(20), COUNTRY varchar(20));

4. We can then use the INSERT statement to populate the table with the result

set of the XMLTABLE function as follows:

insert into CUSTOMERDATA
select X.* from CUSTOMER,
XMLTABLE ('$d/customerinfo' passing INFO as "d" COLUMNS
cid integer PATH '@Cid', name varchar(30) PATH 'name',
city varchar(20) PATH 'addr/city', country varchar(20) PATH
'addr/@country') as X;

5. Finally, we can check the result running by running the following query:

select * from CUSTOMERDATA

Suggested Reading

Extenal Links:

• XQuery 1.0:

 www.w3.org/TR/XQuery

• XQuery Tutorial:
www.w3schools.com/XQuery/default.asp

IBM DB2 9.7 Academic Workshop 284 of 335

11

• XQuery FLWOR Expressions:

http://www.w3schools.com/XQuery/XQuery_f

• What is XQuery:
http://www.XQuery.com/

Articles:

• An Introduction to XQuery, by Howard Katz.
http://www-128.ibm.com/developerworks/xml/library/x-XQuery.html

• Query DB2 XML Data with XQuery, by Don Chamberlin and C. M. Saracco.

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0604saracco/

• XQuery: An XML query language, by Don Chamberlin.
http://www.research.ibm.com/journal/sj/414/chamberlin.html

• Native XML Support in DB2 Universal Database, by Matthias Nicola and Bert

Van der Linden.
http://www.vldb2005.org/program/paper/thu/p1164-nicola.pdf

• Query DB2 XML Data with SQL, by C. M. Saracco.

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0604saracco/

• XML Matters: Indexing XML documents, by David Mertz.
http://www-128.ibm.com/developerworks/xml/library/x-matters10.html

• What’s new in DB2 Viper, by Cynthia M. Saracco.

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0602saracco/

IBM DB2 9.7 Academic Workshop 285 of 335

© 2010 IBM Corporation

Information Management

Information Management Ecosystem Partnerships
IBM Canada Lab

Summer/Fall 2010

DB2® Programming Fundamentals

 2 © 2010 IBM Corporation

Information Management

Agenda

� Application Development Environment

� Embedded SQL

� Static SQL

� Dynamic SQL

� Routines
�Types
�Benefits
�Usage
�Tools for Developing Routines

� Triggers

IBM DB2 9.7 Academic Workshop 286 of 335

 3 © 2010 IBM Corporation

Information Management

Application Development Environment

� Combination of hardware and software used to develop an
application

� The DB2 Application Development Environment (ADE) is
composed of several software elements:

� operating system
� IBM® Data Server Client
� Database Application Programming Interface (API)
� programming language
� development tools

App
Executable

Runtime
Libs

Dev
Tools

Prog
Lang

DB
API

Dev
Libs

Builds

IBM Data Server ClientO
p

e
ra

ti
n
g

 S
y
s
te

m

 4 © 2010 IBM Corporation

Information Management

Operating System

� You can develop DB2 database applications on the following
operating systems:

AIX®

HP-UX

Linux®

Solaris

Windows®

OS

IBM DB2 9.7 Academic Workshop 287 of 335

 5 © 2010 IBM Corporation

Information Management

IBM Data Server Client

� The IBM Data Server Client provides
� Support to database application development
� DB2 administration tools
� Runtime connectivity to applications

� To configure the DB2 application development, you must
have:

� installed a Data Server Client
� completed basic configuration steps for the Data Server

Client

 6 © 2010 IBM Corporation

Information Management

Types of IBM Data Server Client

� IBM Data Server Client is available in 2 packagings:
� IBM Data Server Client

� Complete package: includes ALL development drivers and
administration tools

� Supports database administration and application
development using an API such as ODBC, CLI, .NET, or
JDBC

� Required for applications using DB2CI API

� IBM Data Server Runtime Client
� If DB2 command line processor (CLP) support and basic

client support for running and deploying applications is
needed � i.e. no development libraries

� Includes all runtime libraries

IBM DB2 9.7 Academic Workshop 288 of 335

 7 © 2010 IBM Corporation

Information Management

Types of IBM Data Server Client and Drivers

� IBM Data Server Drivers
� Smaller footprint than Data Server Client
� It can be embedded in applications for redistribution

� Types available:
�IBM Data Server Driver for JDBC and SQLJ

� for Java� applications only

�IBM Data Server Driver for ODBC and CLI
� for applications using ODBC or CLI only

�IBM Data Server Driver Package
� for applications using ODBC, CLI, .NET, OLE DB, PHP,

Ruby, JDBC, or SQLJ
� if DB2 Command Line Processor Plus (CLPPlus) support is

needed

 8 © 2010 IBM Corporation

Information Management

Database Application Programming Interface

� To configure the ADE for the APIs that you will use, you must
have:

�installed a Data Server Client
�installed the API driver(s)

� APIs available for use include:
�ADO.NET
�DB2 CLI and ODBC
�DB2CI (counterpart to Oracle's OCI)
�Embedded SQL
�JDBC and SQLJ
�OLE DB
�Perl
�PHP
�Ruby/Ruby on Rails
�Python

IBM DB2 9.7 Academic Workshop 289 of 335

 9 © 2010 IBM Corporation

Information Management

Programming Languages

C and C++

COBOL and Fortran REXX�

Ruby/Ruby on Rails

Perl and PHP

Java� Python

Supported
Programming
Languages

C#, VB .NET and other .NET languages

 10 © 2010 IBM Corporation

Information Management

Introduction to Embedded SQL

� Embedded SQL
� Applications are coded by embedding SQL statements

within the application source code

� Characteristics of Embedded SQL
� Embedded SQL database applications connect to

databases and execute embedded SQL statements.
� Embedded SQL statements are embedded within a host

programming language code.
� Embedded SQL statements can be executed statically or

dynamically.
� You can develop embedded SQL applications for DB2 in

the following host programming languages:
� C, C++, COBOL, FORTRAN, and REXX�

IBM DB2 9.7 Academic Workshop 290 of 335

 11 © 2010 IBM Corporation

Information Management

Building Embedded SQL Applications

� Since source code has Embedded SQL code, the host
language compiler cannot process it.

� A pre-compilation phase is necessary to replace the
Embedded SQL with valid host language syntax.

� Prior to application compilation and linking
� Prepare the source files containing embedded SQL

statements using the DB2 precompiler. Outputs:
� Modified source file
� Bind file � contains access plans for static SQL statements

in the application code

� Bind the statements in the application to the target
database.

� Once precompiled and bound the embedded SQL
application is ready to be compiled and linked using the host
language-specific development tools.

 12 © 2010 IBM Corporation

Information Management

Building Embedded SQL Applications - Steps

1. Create source files with embedded SQL

2. Connect to a database, then precompile each source file to
convert embedded SQL source statements

3. Compile the modified source files (and other files without
SQL statements) using the host language compiler (Eg: C
compiler)

4. Link the object files with the DB2 and host language
libraries to produce an executable program.

�Compiling and linking (steps 3 and 4) create the
required object modules

5. Bind the bind file, if this was not already done at
precompile time, or if a different database is going to be
accessed

6. Run the application

IBM DB2 9.7 Academic Workshop 291 of 335

 13 © 2010 IBM Corporation

Information Management

Building Embedded SQL Applications - Steps

if (strlen(user) != 0) {
 EXEC SQL CONNECT :user

 IDENTIFIED BY :pwd;
}

if (strlen(user) != 0) {
 cliRC = SQLConnect(*pHdbc,
 (SQLCHAR *)dbAlias,
 SQL_NTS,
 (SQLCHAR *)user,
 SQL_NTS,
 (SQLCHAR *)pwd,
 SQL_NTS);
}

 14 © 2010 IBM Corporation

Information Management

PREP and BIND

� PREP (PRECOMPILE)
�Reads your source code, parses and converts the

embedded SQL statements to DB2 run-time services API
calls

�writes the output to a new modified source file
�The precompiler produces access plans for the SQL

statements which are stored together as a package within
the database

� BIND
�done by default during precompilation (the PREP command)

�if deferred then the BINDFILE option needs to be specified

at PREP time in order for a bind file to be generated

IBM DB2 9.7 Academic Workshop 292 of 335

 15 © 2010 IBM Corporation

Information Management

Static and Dynamic SQL

� There are two different types of SQL statements:
�statically executed SQL
�dynamically executed SQL

� Statically executed SQL statements
� Syntax is fully known at precompile time

� names for the columns and tables referenced in a statement
must be fully known at precompile time

� Static � SQL statement doesn't change
� SQL statements are compiled (access plan is created) before the

application is built.
� Statically executed SQL is best used on databases whose

statistics do not change a great deal.
� Since the access plan is created at compilation time.

 EXEC SQL UPDATE staff

 SET salary = salary + 10000

 WHERE id >= 310 AND dept = 84;

 16 © 2010 IBM Corporation

Information Management

Static and Dynamic SQL

� Dynamically executed SQL statements
�are built and executed by an application at run-time

� A Scenario where Dynamic SQL would be used:
�an interactive application that prompts the end user for key

parts of an SQL statement
� Eg: Search for employees based on their name, or the last

name, or both.

 strcpy(hostVarStmtDyn,
 "UPDATE staff SET salary = salary * 1.1 WHERE dept = ?");

 EXEC SQL PREPARE StmtDyn FROM :hostVarStmtDyn;
 EXEC SQL EXECUTE StmtDyn USING :dept;

SQL statement is created
at execution time

SQL statements is dynamically
prepared and executed

SQL statement is created
at execution time

IBM DB2 9.7 Academic Workshop 293 of 335

 17 © 2010 IBM Corporation

Information Management

Routines

� Routines are database objects:
� can encapsulate programming and database logic that can

be invoked like a programming sub-routine from a variety of
SQL interfaces

� There are many useful applications and benefits of using
routines within a database or database application. Egs:

� Extending built-in SQL function support
� Encapsulate application logic that can be invoked from an

SQL interface
� Improve application performance by reducing network traffic
� Allow for faster, more efficient SQL execution
� Allow the interoperability of logic implemented in different

programming languages
� Access to features that exist only on the server
� Enforcement of business rules

 18 © 2010 IBM Corporation

Information Management

Types of Routines

� Definition of a routine can be
� System-defined: built-in; provided with the product
� User-defined: created by users

� The supported functional types of routines are:
� Functions
� Procedures (also called stored procedures)
� Methods

� The supported routine implementations are:
� Built-in routines

� Eg: SUM(), COUNT() are built-in functions

� Sourced routines
� SQL routines

� Composed of SQL and SQL PL (Procedural Language)

� External routines
� Developed outside the DB2 database using a programming

language (Eg: Java, C, C++, etc)

IBM DB2 9.7 Academic Workshop 294 of 335

 19 © 2010 IBM Corporation

Information Management

System-defined and User-defined Routines

� System-defined routines
� Provided with the product
� Immediately ready-to-use
� Require the necessary privileges to invoke these routines

� User-defined routines
� Created by the user
� Extend the SQL language beyond the support which is

currently available
� Implemented in a variety of ways including:

� sourcing built-in routines
� using SQL statements only
� using SQL with another programming language

 20 © 2010 IBM Corporation

Information Management

User Defined Functions

� User�Defined Functions (UDFs) are special objects that are
used to extend and enhance the support provided by the
built�in functions available with DB2.

� Unlike DB2's built�in functions, user�defined functions can
take advantage of system calls and DB2's administrative
APIs.

� SQL UDFs � coded using SQL PL
� External UDFs � coded using a programming language

� Functions always return a value:

� SQL Scalar, Table, or Row

� User-defined functions are created (or registered) by
executing the CREATE FUNCTION SQL statement.

IBM DB2 9.7 Academic Workshop 295 of 335

 21 © 2010 IBM Corporation

Information Management

User Defined Functions � Example

� UDF returning a table as result

� The CREATE FUNCTION statement defines a table function

that returns the employees in a specified department
number.

CREATE FUNCTION DEPTEMPLOYEES (DEPTNO VARCHAR(3))
RETURNS TABLE (EMPNO CHAR(6),

LASTNAME VARCHAR(15),
FIRSTNAME VARCHAR(12))

LANGUAGE SQL

READS SQL DATA

NO EXTERNAL ACTION

DETERMINISTIC

RETURN

 SELECT EMPNO, LASTNAME, FIRSTNME FROM EMPLOYEE

WHERE EMPLOYEE.WORKDEPT = DEPTEMPLOYEES.DEPTNO

 22 © 2010 IBM Corporation

Information Management

User Defined Functions :: Executing

� Functions can be invoked from inside a SQL statement

� Example: a SELECT statement that makes use of the

DEPTEMPLOYEES function
SELECT EMPNO, LASTNAME, FIRSTNAME FROM

TABLE(DEPTEMPLOYEES('A00')) AS D

� The User-Defined Table Function is invoked by referencing
the function in the FROM clause of an SQL statement where
it can process a set of input values.

� The reference to the table function must be preceded by the
TABLE clause and be contained in brackets.

IBM DB2 9.7 Academic Workshop 296 of 335

 23 © 2010 IBM Corporation

Information Management

Stored Procedures

� It is an ordinary program composed entirely of SQL
statements and SQL PL code that can be called by an
application.

� Stored procedures (SP) can be called locally or remotely.

� Locally: from another stored procedure or trigger
� Remotely: from an application

� An external stored procedure is a stored procedure that is
written using a high-level programming language

�External stored procedures can be more powerful than SQL stored
procedures because they can take advantage of system calls and
administrative APIs along with SQL statements.

�The drawback is that since they are external to the DB2 engine,
they are usually not as efficient as SQL Stored Procedures.

 24 © 2010 IBM Corporation

Information Management

Stored Procedures � SQL PL Support

� The SQL Procedural Language (SQL PL) is a language
extension of SQL

� consists of statements and language elements
� used to implement procedural logic in SQL statements

� Conditional (IF), loops (FOR), exception handling, etc

� SQL procedures with SQL PL
� allows you to effectively program in SQL
� complete set of SQL PL statements can be used in SQL

procedures

IBM DB2 9.7 Academic Workshop 297 of 335

 25 © 2010 IBM Corporation

Information Management

Stored Procedures � PL/SQL Support

� PL/SQL (Procedural Language/Structured Query Language)
statements:

� can be compiled and executed using DB2 interfaces
� reduces the complexity of enabling existing PL/SQL

solutions to work with the DB2 data server

� The supported interfaces include:
� DB2 command line processor (CLP)
� DB2 CLPPlus
� IBM® Data Studio
� IBM Optim� Development Studio

� PL/SQL statement execution is not enabled from these
interfaces by default. PL/SQL statement execution support
must be enabled on the DB2 data server.

 26 © 2010 IBM Corporation

Information Management

Stored Procedures � Creating and Invoking

� Stored Procedures

�created by executing the CREATE PROCEDURE statement

�invoked by executing the CALL statement with a reference to

a procedure
�can take input, output, and input-output parameters, execute

a wide variety of SQL statements, and return multiple result
sets to the caller

� Procedures can be invoked from anywhere that the CALL
statement is supported including:

�client applications
�External routines (procedure, UDF, or method)
�SQL routines (procedure, UDF, or method)
�Triggers (before triggers, after triggers, or instead of triggers)
�Dynamic compound statements
�Command line processor (CLP)

IBM DB2 9.7 Academic Workshop 298 of 335

 27 © 2010 IBM Corporation

Information Management

Stored Procedures � Example

� An example CREATE PROCEDURE statement for the

DEPT_MEDIAN procedure signature is as follows:

CREATE PROCEDURE DEPT_MEDIAN

(IN deptNumber SMALLINT, OUT medianSalary DOUBLE)

� Using the CALL statement from the CLP

� specify the procedure name and appropriate parameter
arguments

db2 call dept_median (51, ?)

 28 © 2010 IBM Corporation

Information Management

External Routines

� External routines
�Routine logic is implemented in a programming language

application that resides outside of the database

� You can create
�external procedures
�external functions
�external methods.

� Benefits
�harness the full functionality and performance of the chosen

implementation programming language
�access and manipulate entities outside of the database

� When to use an External routine
�require a smaller degree of interaction with the DB2

database, but that must contain a lot of logic or very complex
logic

IBM DB2 9.7 Academic Workshop 299 of 335

 29 © 2010 IBM Corporation

Information Management

Developing Routines

� Procedure for Developing Routines
1.When there is no system-defined routine available that

provides the functionality that is required
2.Determine what type of routine to create
3.What implementation to use

� SQL Routine
� External Routine

4.Define the interface for the routine
5.Develop the routine logic
6.Execute SQL to create the routine
7.Test the routine
8.Deploy it for general use

 30 © 2010 IBM Corporation

Information Management

Tools for Developing Routines

� Graphical User-Interface (GUI) tool, provided with DB2:
�IBM® Data Studio

� easy-to-use development environment
� simplify the process of creating routines
� develop stored procedures on one operating system and

build them on other server operating systems

� Command Line Interface, provided with DB2:
�DB2 Command Line Processor (DB2 CLP)

IBM DB2 9.7 Academic Workshop 300 of 335

 31 © 2010 IBM Corporation

Information Management

Triggers

� A trigger defines a set of actions that are performed in
response to an insert, update, or delete operation on a
specified table.

� Like constraints, triggers are often used to enforce data
integrity and business rules.

� Unlike constraints, triggers can also be used to update other
tables, automatically generate or transform values for
inserted or updated rows, and invoke functions to perform
tasks such as issuing errors or alerts.

� Using triggers places the logic that enforces business rules
inside the database.

 32 © 2010 IBM Corporation

Information Management

Triggers � Example

� Suppose you had the following EMPLOYEES base table..

..and you wanted to create a trigger for EMPLOYEES that will store
information about salary changes in a table called SALARY_HIST.

Column Name ... Data Type ...

EMPNO INTEGER

FNAME CHAR(20)

LNAME CHAR(30)

TITLE CHAR(10)

DEPARTMENT CHAR(20)

SALARY DECIMAL(6,2)

IBM DB2 9.7 Academic Workshop 301 of 335

 33 © 2010 IBM Corporation

Information Management

Triggers � Example (Continued)

CREATE TRIGGER empno_inc

AFTER UPDATE ON employees

REFERENCING NEW AS n OLD AS o

FOR EACH ROW

 INSERT INTO salary_hist

 VALUES (o.empno,

 o.salary,

 CURRENT TIMESTAMP)

Names the
trigger

Specifies the action to be performed
when a trigger is activated

The action is to be
applied once for

each row affected
by the trigger

The action is to be applied after
the changes caused by the

actual update of the subject table

© 2010 IBM Corporation

Information Management

Information Management Ecosystem Partnerships
IBM Canada Lab

Summer/Fall 2010Questions?

E-mail: imschool@us.ibm.com
Subject: �DB2 Academic Workshop�

IBM DB2 9.7 Academic Workshop 302 of 335

IBM DB2® 9.7

Accessing DB2
Databases from
Applications
Hands-On Lab

I

Information Management Ecosystem Partnerships

IBM Canada Lab

IBM DB2 9.7 Academic Workshop 303 of 335

2

Contents

CONTENTS... 1
1. INTRODUCTION.. 3
2. OBJECTIVES OF THIS LAB... 3
3. SETUP AND START DB2 ... 4

3.1 Environment Setup Requirements .. 4
3.2 Login to the Virtual Machine ... 4
3.3 SAMPLE Database ... 5
3.4 Create and populate the table... 5

4. CONFIGURING THE APPLICATION FOR ACCESS TO DB2 USING JDBC
 6

4.1 Open the Application in IBM Data Studio.. 6
4.2 Install JDBC Driver.. 9

5. CONNECTING TO DB2... 12
5.1 Closing the Connection... 13

6. QUERYING DATA ... 13
6.1 Incorporating SELECT with the Application .. 15
6.2 Search the Database using the Application .. 16

7. INSERTING DATA... 19
7.1 Incorporating INSERT with the Application... 20
7.2 Insert into the Database using the Application...................................... 21

IBM DB2 9.7 Academic Workshop 304 of 335

3

1. Introduction

DB2 provides support to a wide range of programming languages and APIs (Ap-
plication Programming Interface) that allow applications to access and manipu-
late data in a DB2 database.

A development environment is typically composed of several elements such as
the operating system, programming language, database API and DBMS drivers,
development tools and of course the database server. The combination of these
elements will define which database API and drivers you will need in order to ac-
cess a DB2 database.

Database drivers and APIs are specialized pieces of software that implement the
necessary functions to execute operations against a DBMS, and transfer data
between the database server and the client application. This way, developers
can focus on coding business logic in their system and leave the details of data
communication to the drivers.

2. Objectives of This Lab

In this lab, we assume that your company wants you to create a Java application
capable of querying a database for employee information. You then decide to
use JDBC (Java Database Connectivity) as the API to access the DB2 server.

After completion of this lab, the student should be able to:

• Install the JDBC driver in IBM Data Studio

• Write Java code that can:

• Create a connection to DB2

• Properly close a connection to DB2

• Query data using SELECT statements

• Add new data to the database

IBM DB2 9.7 Academic Workshop 305 of 335

4

3. Setup and Start DB2

3.1 Environment Setup Requirements
To complete this lab you will need the following:

• DB2 Academic Workshop VMware® image

• VMware Player 2.x or VMware Workstation 5.x or later
For help on how to obtain these components please follow the instructions speci-
fied in the VMware Basics and Introduction module.

3.2 Login to the Virtual Machine
1. Login to the VMware virtual machine using the following information:

User: db2inst1
Password: password

2. Type in the command “startx” to bring up the graphical environment.

3. Open a terminal window as by right-clicking on the Desktop area and

choose the “Open Terminal” item.

IBM DB2 9.7 Academic Workshop 306 of 335

5

4. Start up DB2 Server by typing “db2start” in the terminal window.

db2start

3.3 SAMPLE Database
For executing this lab, you will need the DB2’s sample database created in its
original format.

Execute the commands below to drop (if it already exists) and recreate the
SAMPLE database:
db2 force applications all

db2 drop db sample

db2sampl

3.4 Create and populate the table
We will create a simple table that will be updated during this lab session. The
table named “ESQLEMPLOYEE” will be created and will be populated with 1 row
of data.

IBM DB2 9.7 Academic Workshop 307 of 335

6

1. Change to the directory where the script files are.
cd /home/db2inst1/Documents/LabScripts/EmbeddedSQL

2. We will take a look at the simple query first by using the command
cat create_table.sql

3. To run the query, in the terminal window, type in
db2 –tvf create_table.sql

4. Configuring the Application for Access
to DB2 Using JDBC

4.1 Open the Application in IBM Data Studio
Now that the database is ready and the ESQLEMPLOYEE table is created, we
need to open the application that we will be working with in IBM Data Studio.
Once opened, we can begin configuring the DB2 JDBC driver for the application.

IBM DB2 9.7 Academic Workshop 308 of 335

7

1. Open IBM Data Studio by clicking Computer and choosing IBM Data
Studio 2.2.

2. A prompt to select a workstation will appear. Enter

“/home/db2inst1/Documents/LabScripts/EmbeddedSQL/embedded_sql_
workspace” as the workstation and select OK.

IBM DB2 9.7 Academic Workshop 309 of 335

8

3. The following screen will be displayed.

IBM DB2 9.7 Academic Workshop 310 of 335

9

We have successfully opened our application in IBM Data Studio; however it is
not ready to connect to DB2 just yet. In order to connect to DB2 we must first
install the JDBC driver in our project.

4.2 Install JDBC Driver
The JDBC Driver allows Java applications to connect to SQL compliant
databases, send SQL statements, and process return messages and data.

1. With IBM Data Studio opened, right click EmbeddedSQL and select
Properties.

IBM DB2 9.7 Academic Workshop 311 of 335

10

2. Select Java Build Path from the list. Then select the Libraries tab and
click the Add External JARs button.

3. Browse to

“/home/db2inst1/Documents/LabScripts/EmbeddedSQL/ibm_data_serv
er_driver_for_jdbc_sqlj_v97” and select all the files in this folder.

IBM DB2 9.7 Academic Workshop 312 of 335

11

4. The selected files will now appear under the Libraries Tab. Select OK
to continue.

5. The JDBC Driver has been successfully installed. You can view the

libraries that were added by selecting Referenced Libraries in the
Package Explorer.

IBM DB2 9.7 Academic Workshop 313 of 335

12

Now that the JDBC driver is properly set up in our development environment, we
can start adding code in our application to connect to DB2.

5. Connecting to DB2
Whenever we wish to interact with a database, we must first establish a
connection to the database server.

1. In the database package, open the EmbeddedSQLConnection class.
Select the EmbeddedSQL project and press F5 to open the class

The EmbeddedSQLConnection class will be the most important class in this
exercise. This class contains all the functions in the application related to data
access.

2. In order to create a connection, a variable of type Connection must first
be declared to hold the Connection object.

private Connection con;

Now we can create the connection to the DB2 server using the DriverManager
object, and finally we store that connection in the “con” variable.

3. Complete the getConnection() function by uncommenting the code
provided within getConnection().

con=DriverManager.getConnection("jdbc:db2://localhost:50001/SAMPLE","db
2inst1","password");

The method getConnection() is attempting to establish a connection to the given
database URL. We are connecting to DB2’s SAMPLE database with the user
“db2inst1” using the password “password” through the JDBC API on port 50001.

IBM DB2 9.7 Academic Workshop 314 of 335

13

5.1 Closing the Connection
Now that we know how to establish a connection, we also need to know how to
properly close our connection to DB2 once it is not needed any more. This is an
important step as it will free up system’s resources for your application and the
database server.

1. In the EmbeddedSQLConnection class, complete the
closeConnection() function by uncommenting the code provided within
closeConnection().

con.close()

The method close() is terminating the connection to the database specified
during the getConnection() method above. Once the connection is terminated
we can also set con = null.

6. Querying Data

Now that we have created functions to create and close a connection to DB2, we
are ready to write a query to search through and display data.

1. In the EmbeddedSQLConnection class, complete the
getEmployeeInformation() function by uncommenting the code
provided within getEmployeeInformation ().

IBM DB2 9.7 Academic Workshop 315 of 335

14

The getEmployeeInformation() function selects employee information based on a
provided name. It is used by the application to search through the database for a
specific employee.

2. In order to create and execute a query, an object of type
PreparedStatement must first be specified.

PreparedStatement s = null;

The PreparedStatement object “s”, will be used to hold the SQL SELECT
statement.

3. The SQL statements itself is coded as a String.

String query = "SELECT userNumber, userID, password, name, address,
city, postalCode, telephoneNumber, email, position FROM ESQLEMPLOYEE
WHERE name = ?";

4. We can now create the PreparedStatement using the Connection
object con and the prepareStatement() method. The resulting object is
stored in the variable “s“.

s = con.prepareStatement(query);

5. Looking at the query String, notice the “?”. This is called a parameter
marker. It marks the place where a value will be inserted during
runtime, in this case, the search criteria provided by the user when
executing the application.
The following command is used to associate a value with the
parameter marker.

s.setString(1, name);

IBM DB2 9.7 Academic Workshop 316 of 335

15

For example: If we wish to search for an employee with the name Tu Tran, the
String query becomes, "SELECT userNumber, userID, password, name,
address, city, postalCode, telephoneNumber, email, position FROM
ESQLEMPLOYEE WHERE name = Tu Tran";.

6. As we execute the query, the results returned from the query must be
stored. We store the data in an object of the type ResultSet.

ResultSet rs=s.executeQuery();

7. Finally we can retrieve the data stored in the ResultSet.

while(rs.next())
{

u.changeUserNumber(rs.getInt(1));

u.changeUserID(rs.getString(2));

u.changePassword(rs.getString(3));

u.changeName(rs.getString(4));

u.changeAddress(rs.getString(5));

u.changeCity(rs.getString(6));

u.changePostalCode(rs.getString(7));

u.changeTelephoneNumber(rs.getString(8));

u.changeEmail(rs.getString(9));

u.changePosition(rs.getString(10));

}

6.1 Incorporating SELECT with the Application
We have created functions to create and close a connection to DB2 as well as to
return data using a SELECT statement. How can we use these functions in our
application?

1. In the GUI package, open the MainFrame class.

IBM DB2 9.7 Academic Workshop 317 of 335

16

The MainFrame class is where we will be using the functions created to interact
with DB2. This class contains all the functions in the application that are
responsible for allowing the user to interact with the application.

2. Go to the Search() function and uncomment the code provided.

//5.1 Incorporating SELECT with the Application
x.getConnection();
x.getEmployeeInformation(u, name.getText());
x.closeConnection();

6.2 Search the Database using the Application
The application is now capable of performing a SELECT statement on the
database and displaying the information returned.

1. In the gui package, open the Main class and press .

IBM DB2 9.7 Academic Workshop 318 of 335

17

2. If you have not saved your changes, you will be prompted to save the
file(s). Select all the resources that need to be saved and press OK.

3. The following program will appear. Enter the name “Tu Tran” and

press Search.

IBM DB2 9.7 Academic Workshop 319 of 335

18

We can see that the following employee data was returned from the database.

4. Open a Terminal and connect to the Sample database to view the
ESQLEMPLOYEE table.

db2 connect to sample
db2 “SELECT * FROM ESQLEMPLOYEE”

IBM DB2 9.7 Academic Workshop 320 of 335

19

We can see that the data returned through the Embedded SQL application is the
same as the data we see by directly connecting to the Sample database.

5. Go back to the Java program and press “OK” to close the window.

6. Press “X” to close the application.

7. Inserting Data

Using the INSERT statement is similar to using the SELECT statement except
we do not need to store data in a ResultSet.

1. In the EmbeddedSQLConnection class, complete the addEmployee()
function by uncommenting the code provided within addEmployee().

IBM DB2 9.7 Academic Workshop 321 of 335

20

The addEmployee () function inserts new employee information into the table
ESQLEMPLOYEE.

2. As before, an object of type PreparedStatement is specified to store
the SQL statement.

PreparedStatement s = null;

3. The SQL statement is coded as the following String.

String query = "INSERT INTO ESQLEMPLOYEE (userNumber, userID, password,
name, address, city, postalCode, telephoneNumber, email, position)
VALUES (?,?,?,?,?,?,?,?,?,?)";

4. We can now create the PreparedStatement using the Connection
object con and the prepareStatement() method.

s = con.prepareStatement(query);

5. Notice the INSERT statement has several parameter markers. As
before, they are necessary to associate values provided by the user to
the SQL statement being executed.
A command like the one below is used to associate a value to one of
the parameters.

s.setString(2, userID);

6. The statement can now be executed.

s.execute();

7.1 Incorporating INSERT with the Application
We have created functions to create and close a connection to DB2 as well insert
data using an INSERT statement. How can we use these functions in our
application?

1. In the GUI package, open the MainFrame class.

IBM DB2 9.7 Academic Workshop 322 of 335

21

The MainFrame class is where we will be using the functions created to interact
with DB2. This class contains all the functions in the application that are
responsible for allowing the user to interact with the application.

2. Go to the AddToDB() function and uncomment the code provided.

//6.1 Incorporating INSERT with the Application
x.getConnection();
x.addEmployee(intText, userID.getText(), password.getText(),
eName.getText(), address.getText(), city.getText(),
postalCode.getText(), telephoneNumber.getText(), email.getText(),
position.getText());
x.closeConnection();

7.2 Insert into the Database using the Applica-
tion

The application is now capable of performing an INSERT statement to add new
employees to the database.

1. In the gui package, open the Main class and press .

IBM DB2 9.7 Academic Workshop 323 of 335

22

2. If you have not saved the changes, you will be prompted to save the

file. Select all resources that need to be saved and press OK.

3. The following program will appear. Press the Add button.

IBM DB2 9.7 Academic Workshop 324 of 335

23

4. The following popup will appear. Enter the information as seen below

and press Add.

We can see that the employee data was successfully added to the database.
Press “OK” to close the popup message.

5. Open a Terminal and connect to the SAMPLE database to view the

ESQLEMPLOYEE table.

db2 connect to sample
db2 “SELECT * FROM ESQLEMPLOYEE”

IBM DB2 9.7 Academic Workshop 325 of 335

24

We can see that the employee “John Park” has been added to the Sample
database.

Congratulations! You have just created a simple application capable of
interacting with DB2. In this exercise we learned how to retrieve and insert data
from a database using the JDBC API. Included with the application, there are
also functions for the DELETE and UPDATE statements. Feel free to read
through the code for a better understanding of how we can use JDBC within a
Java application.

IBM DB2 9.7 Academic Workshop 326 of 335

1

VMware® Basics
and Introduction

I

Information Management Ecosystem Partnerships

IBM Canada Lab

IBM DB2 9.7 Academic Workshop 327 of 335

2

Contents

1. VMWARE BASICS AND INTRODUCTION... 2

2. HOW TO OBTAIN VMWARE SOFTWARE? .. 3

3. UNPACKING THE IMAGE .. 4

4. USING THE VMWARE VIRTUAL MACHINE.. 4

4.1 OPEN THE VIRTUAL MACHINE IN VMWARE... 4
4.2 START THE VIRTUAL MACHINE.. 5
4.3 LOGIN TO THE VIRTUAL MACHINE AND ACCEPT THE LICENSE AGREEMENT..... 6
4.4 START THE GRAPHICAL USER INTERFACE ... 6
4.5 OPEN THE TERMINAL WINDOW ... 7
4.6 CLOSE THE TERMINAL WINDOW.. 8

1. VMware Basics and Introduction

The VMware® Player and VMware Workstation are the synonym for test beds and
developer environments across the IT industry. While having many other functions for
this specific purpose it allows the easy distribution of an “up and running” Linux®
system featuring latest DB2® 9.7 and WebSphere® Application Server technology right
to anybody’s computer – be it a notebook, desktop, or server.
The VMware image can be deployed for simple demos and educational purposes or it
can be the base of your own development and experiments on top of the given
environment.

What is a VMware image?

VMware is providing a virtual computer environment on top of existing operating systems
on top of Intel® or AMD™ processor based systems. The virtual computer has all the
usual components like a CPU, memory and disks as well as network, USB devices or
even sound. The CPU and memory are simply the existing resources provided by the
underlying operating system (you can see them as processes starting with “vmware….”.
The disks are different. For the host operating systems they show up as a collection of
files that can be copied between any system – even between Windows® and Linux
flavors. Those virtual disk files make up the most part of the image while the actual
description file of the virtual machine is very small.

The following will illustrate how to obtain VMware Player. Then, it will show you how to
start the VMware image for the Hands-On Labs used in this technical session.

IBM DB2 9.7 Academic Workshop 328 of 335

3

2. How to obtain VMware Software?

Open a web browser and visit www.vmware.com
Click on the Downloads link. Look for the Downloads link on the upper right hand corner
of the page.

Click on the Desktop Downloads Tab.

Click on the product of your choice. We recommend VMware Player or VMware
Workstation. Follow the on screen instructions for registration and download.

IBM DB2 9.7 Academic Workshop 329 of 335

4

3. Unpacking the image

The image is delivered in a self-extractable set of rar files. For easy handling the files are
compressed to 700MB volumes. Download all the volumes to the same directory.

Double click the executable file and select the destination folder.

4. Using the VMware Virtual Machine

4.1 Open the Virtual Machine in VMware
Starting the VMware virtual machine can happen through either way:

• Double click on the file “DB2 Express-C 9.7 32-bit.vmx” in your Windows
Explorer or Linux file browser.

Or:

• Select it through the File > Open… icon in the VMware console.

Either way should result in the screen below:

IBM DB2 9.7 Academic Workshop 330 of 335

5

4.2 Start the Virtual Machine

Next the image can be booted up by pressing the “Power On” button in the upper
left side (marked in a red circle above).

The system will power up like any other Linux system and will come to the state as
shown in the next picture below:

After the virtual machine has finished booting up, you can now work inside the virtual
machine environment. To bring focus into the virtual machine environment, click inside

the virtual machine screen with your mouse or click on the “Full Screen” button in
the toolbar on top of the VMware window.

IBM DB2 9.7 Academic Workshop 331 of 335

6

After clicking on the screen, you may not see your mouse pointer anymore, this is
normal as you are now operating in a command line mode inside the virtual machine.
You can bring focus to the host operating system at any point by pressing “Alt + Ctrl” at
the same time.

4.3 Login to the Virtual Machine and Accept the
License Agreement

At this time, simply logon to the virtual machine at the command prompt with user
“db2inst1” and password “password”.

You will see some pop-up messages asking you to read and accept the license
agreement.

In order to use this image, you must accept all of the listed agreements and notices that
were displayed. Select “I accept” to go to the next screen. If you do not agree with the
license, select “Abort” and the virtual machine will be shutdown automatically.

You will be successfully login and presented with a login prompt:

db2inst1@db2rules:~>

4.4 Start the Graphical User Interface
The virtual machine is capable of running in graphical mode as well. The default setup is
configured for a 1024x768 pixel screen that provides good results for any given system
today. Finer resolutions are possible but are not recommended since the text gets very
small.

IBM DB2 9.7 Academic Workshop 332 of 335

7

The system comes up with the following screen – still in the window of the VMware
console and probably is showing scroll bars on the sides. Select the “Full Screen”

button on the console to switch to “full screen” mode any time – the result is
significantly better. If you want to leaving the full screen mode, just press the
combination “Alt + Ctrl + Enter” at the same time.

The full screen mode looks as follows:

4.5 Open the Terminal Window
In order to execute commands, we will use the Command Line Terminal. To launch the

terminal window, press the menu at the bottom left corner of the screen,

and select .

IBM DB2 9.7 Academic Workshop 333 of 335

8

A terminal window similar to the above will pop up after you click on the icon.

The terminal gives you a command line prompt and allows you to execute any
commands using this prompt.

4.6 Close the Terminal Window
To close the terminal window, simple click on the “X” button on the top right hand corner
of the terminal window, or type “exit” at the command prompt to exit out of the logged-in
terminal. (Note, it might take multiple “exit” commands to logout of all logged-in sessions
and close the terminal window if you have remote login or you are logged into a different
user from this terminal window).

IBM DB2 9.7 Academic Workshop 334 of 335

9

IBM DB2 9.7 Academic Workshop 335 of 335

IBM DB2 9.7 Academic Workshop 336 of 335

© Copyright IBM Corporation 2010
All Rights Reserved.

IBM Canada
8200 Warden Avenue
Markham, ON
L6G 1C7
Canada

Printed in Canada
07/07/2010

IBM, IBM (logo), and DB2 are trademarks or registered trademarks
of International Business Machines Corporation in the United
States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other
countries, or both.

Windows is a trademark of Microsoft Corporation in the United
States, other countries, or both.

VMware is a trademark or VMware Inc. in the United States, other
countries, or both.

Other company, product, or service names may be trademarks or
service marks of others.

References in this publication to IBM products or services do not
imply that IBM intends to make them available in all countries in
which IBM operates. The following paragraph does not apply to the
United Kingdom or any other country where such provisions are
inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied
warranties in certain transactions, therefore, this statement may not
apply to you.

This information could include technical inaccuracies or
typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any performance data contained herein was determined in a
controlled environment. Therefore, the results obtained in other
operating environments may vary significantly. Some
measurements may have been made on development-level
systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some
measurement may have been estimated through extrapolation.
Actual results may vary. Users of this document should verify the
applicable data for their specific environment.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or
other publicly available sources. IBM has not tested those products
and cannot confirm the accuracy of performance, compatibility or
any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the
suppliers of those products.

The information in this publication is provided AS IS without
warranty. Such information was obtained from publicly available
sources, is current as of July 2010, and is subject to change. Any
performance data included in the paper was obtained in the specific
operating environment and is provided as an illustration.
Performance in other operating environments may vary. More
specific information about the capabilities of products described
should be obtained from the suppliers of those products.

IBM DB2 9.7 Academic Workshop 337 of 335

	Cover_and_Index_v2
	1_0_-_Welcome_bis
	1_1_-_Relational_Data_Model
	1_2_-_Fundamentals_and_Data_Studio
	1.3 - Data Studio Lab
	1_4_-_Working_with_Databases_and_Database_Objects
	1.5 - Working with Databases and Database Objects
	1_6_-_Introduction_to_SQL
	1.7 - Understanding SQL
	2_1_-_Data_Concurrency
	2.2 - Data Concurrency
	2_3_-_DB2_Database_Security
	2.4 - DB2 Security Lab
	2_5_-_DB2_Backup_and_Recovery
	2.6 - DB2 Backup and Recovery Lab
	2_7_-_DB2_pureXML
	2.8 - DB2 pureXML Technology
	3_1_-_DB2_Programming_Fundamentals
	3.2 -Accessing DB2 Databases From Applications
	0.0 - VMware Basics and Introduction
	blank
	back

